Entropy Bottlenecks at T →0 in Ce-Lattice and Related Compounds
- Autores
- Sereni, Julian Gustavo Renzo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A number of specific heat (Formula presented.) anomalies are reported in Ce- and Yb-lattice compounds around 1 K which cannot be associated to usual phase transitions despite of their robust magnetic moments. Instead of a (Formula presented.) jump, these anomalies show coincident morphology: (i) a significant tail in (Formula presented.), with similar power law decay above their maxima ((Formula presented.)), (ii) whereas a (Formula presented.) dependence is observed below (Formula presented.). (iii) The comparison of their respective entropy gain (Formula presented.) indicates that (Formula presented.)ln2 is condensed within the (Formula presented.) tail, in coincidence with an exemplary spin-ice compound. Such amount of entropy arises from a significant increase of the density of low energy excitations, reflected in a divergent (Formula presented.) dependence. (iv) Many of their lattice structures present conditions for magnetic frustration. The origin of these anomalies can be attributed to an interplay between the divergent density of magnetic excitations at (Formula presented.) and the limited amount of degrees of freedom: (Formula presented.)ln2 for a doublet-ground state. Due to this “entropy bottleneck,” the paramagnetic minimum of energy blurs out and the system slides into an alternative minimum through a continuous transition. A relevant observation in these very heavy fermion systems is the possible existence of an upper limit for (Formula presented.)J/mol K(Formula presented.) observed in four Yb- and Pr-based compounds.
Fil: Sereni, Julian Gustavo Renzo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Entropy
Heavy Fermions
Specific Heat Anomalies - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/37340
Ver los metadatos del registro completo
id |
CONICETDig_641f82991b49b7c627ad1b4612d2f6df |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/37340 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Entropy Bottlenecks at T →0 in Ce-Lattice and Related CompoundsSereni, Julian Gustavo RenzoEntropyHeavy FermionsSpecific Heat Anomalieshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A number of specific heat (Formula presented.) anomalies are reported in Ce- and Yb-lattice compounds around 1 K which cannot be associated to usual phase transitions despite of their robust magnetic moments. Instead of a (Formula presented.) jump, these anomalies show coincident morphology: (i) a significant tail in (Formula presented.), with similar power law decay above their maxima ((Formula presented.)), (ii) whereas a (Formula presented.) dependence is observed below (Formula presented.). (iii) The comparison of their respective entropy gain (Formula presented.) indicates that (Formula presented.)ln2 is condensed within the (Formula presented.) tail, in coincidence with an exemplary spin-ice compound. Such amount of entropy arises from a significant increase of the density of low energy excitations, reflected in a divergent (Formula presented.) dependence. (iv) Many of their lattice structures present conditions for magnetic frustration. The origin of these anomalies can be attributed to an interplay between the divergent density of magnetic excitations at (Formula presented.) and the limited amount of degrees of freedom: (Formula presented.)ln2 for a doublet-ground state. Due to this “entropy bottleneck,” the paramagnetic minimum of energy blurs out and the system slides into an alternative minimum through a continuous transition. A relevant observation in these very heavy fermion systems is the possible existence of an upper limit for (Formula presented.)J/mol K(Formula presented.) observed in four Yb- and Pr-based compounds.Fil: Sereni, Julian Gustavo Renzo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer/Plenum Publishers2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37340Sereni, Julian Gustavo Renzo; Entropy Bottlenecks at T →0 in Ce-Lattice and Related Compounds; Springer/Plenum Publishers; Journal of Low Temperature Physics; 179; 1-2; 1-2015; 126-1370022-22911573-7357CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10909-014-1228-zinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10909-014-1228-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:47Zoai:ri.conicet.gov.ar:11336/37340instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:47.939CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Entropy Bottlenecks at T →0 in Ce-Lattice and Related Compounds |
title |
Entropy Bottlenecks at T →0 in Ce-Lattice and Related Compounds |
spellingShingle |
Entropy Bottlenecks at T →0 in Ce-Lattice and Related Compounds Sereni, Julian Gustavo Renzo Entropy Heavy Fermions Specific Heat Anomalies |
title_short |
Entropy Bottlenecks at T →0 in Ce-Lattice and Related Compounds |
title_full |
Entropy Bottlenecks at T →0 in Ce-Lattice and Related Compounds |
title_fullStr |
Entropy Bottlenecks at T →0 in Ce-Lattice and Related Compounds |
title_full_unstemmed |
Entropy Bottlenecks at T →0 in Ce-Lattice and Related Compounds |
title_sort |
Entropy Bottlenecks at T →0 in Ce-Lattice and Related Compounds |
dc.creator.none.fl_str_mv |
Sereni, Julian Gustavo Renzo |
author |
Sereni, Julian Gustavo Renzo |
author_facet |
Sereni, Julian Gustavo Renzo |
author_role |
author |
dc.subject.none.fl_str_mv |
Entropy Heavy Fermions Specific Heat Anomalies |
topic |
Entropy Heavy Fermions Specific Heat Anomalies |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A number of specific heat (Formula presented.) anomalies are reported in Ce- and Yb-lattice compounds around 1 K which cannot be associated to usual phase transitions despite of their robust magnetic moments. Instead of a (Formula presented.) jump, these anomalies show coincident morphology: (i) a significant tail in (Formula presented.), with similar power law decay above their maxima ((Formula presented.)), (ii) whereas a (Formula presented.) dependence is observed below (Formula presented.). (iii) The comparison of their respective entropy gain (Formula presented.) indicates that (Formula presented.)ln2 is condensed within the (Formula presented.) tail, in coincidence with an exemplary spin-ice compound. Such amount of entropy arises from a significant increase of the density of low energy excitations, reflected in a divergent (Formula presented.) dependence. (iv) Many of their lattice structures present conditions for magnetic frustration. The origin of these anomalies can be attributed to an interplay between the divergent density of magnetic excitations at (Formula presented.) and the limited amount of degrees of freedom: (Formula presented.)ln2 for a doublet-ground state. Due to this “entropy bottleneck,” the paramagnetic minimum of energy blurs out and the system slides into an alternative minimum through a continuous transition. A relevant observation in these very heavy fermion systems is the possible existence of an upper limit for (Formula presented.)J/mol K(Formula presented.) observed in four Yb- and Pr-based compounds. Fil: Sereni, Julian Gustavo Renzo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A number of specific heat (Formula presented.) anomalies are reported in Ce- and Yb-lattice compounds around 1 K which cannot be associated to usual phase transitions despite of their robust magnetic moments. Instead of a (Formula presented.) jump, these anomalies show coincident morphology: (i) a significant tail in (Formula presented.), with similar power law decay above their maxima ((Formula presented.)), (ii) whereas a (Formula presented.) dependence is observed below (Formula presented.). (iii) The comparison of their respective entropy gain (Formula presented.) indicates that (Formula presented.)ln2 is condensed within the (Formula presented.) tail, in coincidence with an exemplary spin-ice compound. Such amount of entropy arises from a significant increase of the density of low energy excitations, reflected in a divergent (Formula presented.) dependence. (iv) Many of their lattice structures present conditions for magnetic frustration. The origin of these anomalies can be attributed to an interplay between the divergent density of magnetic excitations at (Formula presented.) and the limited amount of degrees of freedom: (Formula presented.)ln2 for a doublet-ground state. Due to this “entropy bottleneck,” the paramagnetic minimum of energy blurs out and the system slides into an alternative minimum through a continuous transition. A relevant observation in these very heavy fermion systems is the possible existence of an upper limit for (Formula presented.)J/mol K(Formula presented.) observed in four Yb- and Pr-based compounds. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/37340 Sereni, Julian Gustavo Renzo; Entropy Bottlenecks at T →0 in Ce-Lattice and Related Compounds; Springer/Plenum Publishers; Journal of Low Temperature Physics; 179; 1-2; 1-2015; 126-137 0022-2291 1573-7357 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/37340 |
identifier_str_mv |
Sereni, Julian Gustavo Renzo; Entropy Bottlenecks at T →0 in Ce-Lattice and Related Compounds; Springer/Plenum Publishers; Journal of Low Temperature Physics; 179; 1-2; 1-2015; 126-137 0022-2291 1573-7357 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10909-014-1228-z info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10909-014-1228-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer/Plenum Publishers |
publisher.none.fl_str_mv |
Springer/Plenum Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980854592176128 |
score |
12.993085 |