Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina

Autores
Aragon, Eugenio; Castro, Antonio; Diaz Alvarado, Juan; Pinotti, Lucio Pedro; D'eramo, Fernando Javier; Demartis, Manuel; Coniglio, Jorge Enrique; Hernando, Irene Raquel; Rodriguez, Carmen
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Trace elements, isotopic modeling and U-Th-Pb SHRIMP zircon age constraints are used to reconstruct the eruption history and magmatic processes of the Piedra Parada Caldera. In the early Eocene, the crystal-poor Barda Colorada ignimbrite (BCI), having >>15% micro-porphyritic crystals with respect to magmatic components, erupted a volume estimated in more than 300 km3. The Piedra Parada caldera is located in the Patagonian Andes foreland, at the southern end of the calderas field of the Pilcaniyeu Volcanic Belt (PVB). This belt is related to an extensional tectonic setting as a result of the collision of the Farallon-Aluk ridge with South America, which enabled the development of a transform ocean/continental plate margin followed by the detachment of the Aluk plate and the opening of a slab window. The BCI extra-caldera Plateau is a >100 m thick deposit, having a lower unit with high silica (SiO2 > 76 wt.%), potassium poor rhyolitic composition (trondhjemitic like magma), and an upper unit with normal to high potassium rhyolitic composition (granitic like magma). A trace elements modeling of the BCI units shows that the BCI lower and upper units did not evolve from fractionation or immiscibility in the shallow magma reservoir. The BCI also have a primitive isotopic signature (initial 87Sr/86Sr = 0.7031-0.7049 and ε Nd = +3.4 to +3.65). Thus, tectonic, compositional and isotopic constraints suggest the fast ascent of high silica magmas to a shallow reservoir, and point to an upper mantle origin for these rhyolitic magmas in a transitional (Orogenic-Anorogenic) tectono-magmatic setting. U-Th-Pb SHRIMP zircon crystallization ages of the Syn-caldera stage BCI units (56-51.5 Ma) show a protracted life of 5 Ma for this caldera reservoir. The age of 52.9 ± 0.3 Ma is considered the best fit for the possible maximum age for the caldera collapse. The Late-caldera magmatism has trachyandesitic and rhyolitic compositions. The trace element modeling suggests that these rhyolites evolve from the trachyandesites and do not evolve from the BCI residual magma. The trachyandesites have U-Th-Pb SHRIMP zircon crystallization ages of 52 ± 1 Ma, suggesting that the caldera eruption was triggered by the arrival of the trachyandesitic magma.
Fil: Aragon, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; Argentina
Fil: Castro, Antonio. Universidad de Huelva; España
Fil: Diaz Alvarado, Juan. Universidad de Atacama; Chile
Fil: Pinotti, Lucio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina
Fil: D'eramo, Fernando Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina
Fil: Demartis, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina
Fil: Coniglio, Jorge Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina
Fil: Hernando, Irene Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; Argentina
Fil: Rodriguez, Carmen. Universidad de Huelva; España
Materia
Bimodal Volcanism
Crystal-Poor Ignimbrite
K Poor-Rhyolite
Mantle Derived Rhyolite
Slab Window Volcanism
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/49255

id CONICETDig_640d088c5fa314d0d372e3bdfe683547
oai_identifier_str oai:ri.conicet.gov.ar:11336/49255
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern ArgentinaAragon, EugenioCastro, AntonioDiaz Alvarado, JuanPinotti, Lucio PedroD'eramo, Fernando JavierDemartis, ManuelConiglio, Jorge EnriqueHernando, Irene RaquelRodriguez, CarmenBimodal VolcanismCrystal-Poor IgnimbriteK Poor-RhyoliteMantle Derived RhyoliteSlab Window Volcanismhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Trace elements, isotopic modeling and U-Th-Pb SHRIMP zircon age constraints are used to reconstruct the eruption history and magmatic processes of the Piedra Parada Caldera. In the early Eocene, the crystal-poor Barda Colorada ignimbrite (BCI), having >>15% micro-porphyritic crystals with respect to magmatic components, erupted a volume estimated in more than 300 km3. The Piedra Parada caldera is located in the Patagonian Andes foreland, at the southern end of the calderas field of the Pilcaniyeu Volcanic Belt (PVB). This belt is related to an extensional tectonic setting as a result of the collision of the Farallon-Aluk ridge with South America, which enabled the development of a transform ocean/continental plate margin followed by the detachment of the Aluk plate and the opening of a slab window. The BCI extra-caldera Plateau is a >100 m thick deposit, having a lower unit with high silica (SiO2 > 76 wt.%), potassium poor rhyolitic composition (trondhjemitic like magma), and an upper unit with normal to high potassium rhyolitic composition (granitic like magma). A trace elements modeling of the BCI units shows that the BCI lower and upper units did not evolve from fractionation or immiscibility in the shallow magma reservoir. The BCI also have a primitive isotopic signature (initial 87Sr/86Sr = 0.7031-0.7049 and ε Nd = +3.4 to +3.65). Thus, tectonic, compositional and isotopic constraints suggest the fast ascent of high silica magmas to a shallow reservoir, and point to an upper mantle origin for these rhyolitic magmas in a transitional (Orogenic-Anorogenic) tectono-magmatic setting. U-Th-Pb SHRIMP zircon crystallization ages of the Syn-caldera stage BCI units (56-51.5 Ma) show a protracted life of 5 Ma for this caldera reservoir. The age of 52.9 ± 0.3 Ma is considered the best fit for the possible maximum age for the caldera collapse. The Late-caldera magmatism has trachyandesitic and rhyolitic compositions. The trace element modeling suggests that these rhyolites evolve from the trachyandesites and do not evolve from the BCI residual magma. The trachyandesites have U-Th-Pb SHRIMP zircon crystallization ages of 52 ± 1 Ma, suggesting that the caldera eruption was triggered by the arrival of the trachyandesitic magma.Fil: Aragon, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Castro, Antonio. Universidad de Huelva; EspañaFil: Diaz Alvarado, Juan. Universidad de Atacama; ChileFil: Pinotti, Lucio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; ArgentinaFil: D'eramo, Fernando Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; ArgentinaFil: Demartis, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; ArgentinaFil: Coniglio, Jorge Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; ArgentinaFil: Hernando, Irene Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Rodriguez, Carmen. Universidad de Huelva; EspañaElsevier Science2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49255Aragon, Eugenio; Castro, Antonio; Diaz Alvarado, Juan; Pinotti, Lucio Pedro; D'eramo, Fernando Javier; et al.; Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina; Elsevier Science; Geoscience Frontiers; 8; 4; 12-2017; 1-261674-9871CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.gsf.2017.09.004info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1674987117301603info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:41Zoai:ri.conicet.gov.ar:11336/49255instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:42.038CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina
title Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina
spellingShingle Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina
Aragon, Eugenio
Bimodal Volcanism
Crystal-Poor Ignimbrite
K Poor-Rhyolite
Mantle Derived Rhyolite
Slab Window Volcanism
title_short Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina
title_full Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina
title_fullStr Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina
title_full_unstemmed Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina
title_sort Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina
dc.creator.none.fl_str_mv Aragon, Eugenio
Castro, Antonio
Diaz Alvarado, Juan
Pinotti, Lucio Pedro
D'eramo, Fernando Javier
Demartis, Manuel
Coniglio, Jorge Enrique
Hernando, Irene Raquel
Rodriguez, Carmen
author Aragon, Eugenio
author_facet Aragon, Eugenio
Castro, Antonio
Diaz Alvarado, Juan
Pinotti, Lucio Pedro
D'eramo, Fernando Javier
Demartis, Manuel
Coniglio, Jorge Enrique
Hernando, Irene Raquel
Rodriguez, Carmen
author_role author
author2 Castro, Antonio
Diaz Alvarado, Juan
Pinotti, Lucio Pedro
D'eramo, Fernando Javier
Demartis, Manuel
Coniglio, Jorge Enrique
Hernando, Irene Raquel
Rodriguez, Carmen
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Bimodal Volcanism
Crystal-Poor Ignimbrite
K Poor-Rhyolite
Mantle Derived Rhyolite
Slab Window Volcanism
topic Bimodal Volcanism
Crystal-Poor Ignimbrite
K Poor-Rhyolite
Mantle Derived Rhyolite
Slab Window Volcanism
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Trace elements, isotopic modeling and U-Th-Pb SHRIMP zircon age constraints are used to reconstruct the eruption history and magmatic processes of the Piedra Parada Caldera. In the early Eocene, the crystal-poor Barda Colorada ignimbrite (BCI), having >>15% micro-porphyritic crystals with respect to magmatic components, erupted a volume estimated in more than 300 km3. The Piedra Parada caldera is located in the Patagonian Andes foreland, at the southern end of the calderas field of the Pilcaniyeu Volcanic Belt (PVB). This belt is related to an extensional tectonic setting as a result of the collision of the Farallon-Aluk ridge with South America, which enabled the development of a transform ocean/continental plate margin followed by the detachment of the Aluk plate and the opening of a slab window. The BCI extra-caldera Plateau is a >100 m thick deposit, having a lower unit with high silica (SiO2 > 76 wt.%), potassium poor rhyolitic composition (trondhjemitic like magma), and an upper unit with normal to high potassium rhyolitic composition (granitic like magma). A trace elements modeling of the BCI units shows that the BCI lower and upper units did not evolve from fractionation or immiscibility in the shallow magma reservoir. The BCI also have a primitive isotopic signature (initial 87Sr/86Sr = 0.7031-0.7049 and ε Nd = +3.4 to +3.65). Thus, tectonic, compositional and isotopic constraints suggest the fast ascent of high silica magmas to a shallow reservoir, and point to an upper mantle origin for these rhyolitic magmas in a transitional (Orogenic-Anorogenic) tectono-magmatic setting. U-Th-Pb SHRIMP zircon crystallization ages of the Syn-caldera stage BCI units (56-51.5 Ma) show a protracted life of 5 Ma for this caldera reservoir. The age of 52.9 ± 0.3 Ma is considered the best fit for the possible maximum age for the caldera collapse. The Late-caldera magmatism has trachyandesitic and rhyolitic compositions. The trace element modeling suggests that these rhyolites evolve from the trachyandesites and do not evolve from the BCI residual magma. The trachyandesites have U-Th-Pb SHRIMP zircon crystallization ages of 52 ± 1 Ma, suggesting that the caldera eruption was triggered by the arrival of the trachyandesitic magma.
Fil: Aragon, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; Argentina
Fil: Castro, Antonio. Universidad de Huelva; España
Fil: Diaz Alvarado, Juan. Universidad de Atacama; Chile
Fil: Pinotti, Lucio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina
Fil: D'eramo, Fernando Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina
Fil: Demartis, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina
Fil: Coniglio, Jorge Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina
Fil: Hernando, Irene Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; Argentina
Fil: Rodriguez, Carmen. Universidad de Huelva; España
description Trace elements, isotopic modeling and U-Th-Pb SHRIMP zircon age constraints are used to reconstruct the eruption history and magmatic processes of the Piedra Parada Caldera. In the early Eocene, the crystal-poor Barda Colorada ignimbrite (BCI), having >>15% micro-porphyritic crystals with respect to magmatic components, erupted a volume estimated in more than 300 km3. The Piedra Parada caldera is located in the Patagonian Andes foreland, at the southern end of the calderas field of the Pilcaniyeu Volcanic Belt (PVB). This belt is related to an extensional tectonic setting as a result of the collision of the Farallon-Aluk ridge with South America, which enabled the development of a transform ocean/continental plate margin followed by the detachment of the Aluk plate and the opening of a slab window. The BCI extra-caldera Plateau is a >100 m thick deposit, having a lower unit with high silica (SiO2 > 76 wt.%), potassium poor rhyolitic composition (trondhjemitic like magma), and an upper unit with normal to high potassium rhyolitic composition (granitic like magma). A trace elements modeling of the BCI units shows that the BCI lower and upper units did not evolve from fractionation or immiscibility in the shallow magma reservoir. The BCI also have a primitive isotopic signature (initial 87Sr/86Sr = 0.7031-0.7049 and ε Nd = +3.4 to +3.65). Thus, tectonic, compositional and isotopic constraints suggest the fast ascent of high silica magmas to a shallow reservoir, and point to an upper mantle origin for these rhyolitic magmas in a transitional (Orogenic-Anorogenic) tectono-magmatic setting. U-Th-Pb SHRIMP zircon crystallization ages of the Syn-caldera stage BCI units (56-51.5 Ma) show a protracted life of 5 Ma for this caldera reservoir. The age of 52.9 ± 0.3 Ma is considered the best fit for the possible maximum age for the caldera collapse. The Late-caldera magmatism has trachyandesitic and rhyolitic compositions. The trace element modeling suggests that these rhyolites evolve from the trachyandesites and do not evolve from the BCI residual magma. The trachyandesites have U-Th-Pb SHRIMP zircon crystallization ages of 52 ± 1 Ma, suggesting that the caldera eruption was triggered by the arrival of the trachyandesitic magma.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/49255
Aragon, Eugenio; Castro, Antonio; Diaz Alvarado, Juan; Pinotti, Lucio Pedro; D'eramo, Fernando Javier; et al.; Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina; Elsevier Science; Geoscience Frontiers; 8; 4; 12-2017; 1-26
1674-9871
CONICET Digital
CONICET
url http://hdl.handle.net/11336/49255
identifier_str_mv Aragon, Eugenio; Castro, Antonio; Diaz Alvarado, Juan; Pinotti, Lucio Pedro; D'eramo, Fernando Javier; et al.; Mantle derived crystal-poor rhyolitic ignimbrites: Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina; Elsevier Science; Geoscience Frontiers; 8; 4; 12-2017; 1-26
1674-9871
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.gsf.2017.09.004
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1674987117301603
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614077010149376
score 13.070432