Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast
- Autores
- Schaber, Jörg; Baltanas, Rodrigo; Bush, Alan; Klipp, Edda; Colman Lerner, Alejandro Ariel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The high osmolarity glycerol (HOG) pathway in yeast serves as a prototype signalling system foreukaryotes. We used an unprecedented amount of data to parameterise 192 models capturingdifferent hypotheses about molecular mechanisms underlying osmo-adaptation and selected a bestapproximating model. This model implied novel mechanisms regulating osmo-adaptation in yeast.The model suggested that (i) the main mechanism for osmo-adaptation is a fast and transient nontranscriptionalHog1-mediated activation of glycerol production, (ii) the transcriptional responseserves to maintain an increased steady-state glycerol production with lowsteady-state Hog1 activity,and (iii) fast negative feedbacks of activated Hog1 on upstream signalling branches serves tostabilise adaptation response. The best approximating model also indicated that homoeostaticadaptive systems with two parallel redundant signalling branches show a more robust and fasterresponse than single-branch systems. We corroborated this notion to a large extent by dedicatedmeasurements of volume recovery in single cells. Our study also demonstrates that systematicallytesting a model ensemble against data has the potential to achieve a better and unbiasedunderstanding of molecular mechanisms.
Fil: Schaber, Jörg. Institute For Experimental Internal Medicine; Alemania
Fil: Baltanas, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Bush, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Klipp, Edda. Humboldt-Universität zu Berlin; Alemania
Fil: Colman Lerner, Alejandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina - Materia
-
signal transduction
mathematical modeling
stress response
yeast - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/272667
Ver los metadatos del registro completo
| id |
CONICETDig_63823a3a56f206fd157f5bdf25c1b76c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/272667 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeastSchaber, JörgBaltanas, RodrigoBush, AlanKlipp, EddaColman Lerner, Alejandro Arielsignal transductionmathematical modelingstress responseyeasthttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The high osmolarity glycerol (HOG) pathway in yeast serves as a prototype signalling system foreukaryotes. We used an unprecedented amount of data to parameterise 192 models capturingdifferent hypotheses about molecular mechanisms underlying osmo-adaptation and selected a bestapproximating model. This model implied novel mechanisms regulating osmo-adaptation in yeast.The model suggested that (i) the main mechanism for osmo-adaptation is a fast and transient nontranscriptionalHog1-mediated activation of glycerol production, (ii) the transcriptional responseserves to maintain an increased steady-state glycerol production with lowsteady-state Hog1 activity,and (iii) fast negative feedbacks of activated Hog1 on upstream signalling branches serves tostabilise adaptation response. The best approximating model also indicated that homoeostaticadaptive systems with two parallel redundant signalling branches show a more robust and fasterresponse than single-branch systems. We corroborated this notion to a large extent by dedicatedmeasurements of volume recovery in single cells. Our study also demonstrates that systematicallytesting a model ensemble against data has the potential to achieve a better and unbiasedunderstanding of molecular mechanisms.Fil: Schaber, Jörg. Institute For Experimental Internal Medicine; AlemaniaFil: Baltanas, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Bush, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Klipp, Edda. Humboldt-Universität zu Berlin; AlemaniaFil: Colman Lerner, Alejandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaNature Publishing Group2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/272667Schaber, Jörg; Baltanas, Rodrigo; Bush, Alan; Klipp, Edda; Colman Lerner, Alejandro Ariel; Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast; Nature Publishing Group; Molecular Systems Biology; 8; 1; 11-2012; 1-171744-4292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://msb.embopress.org/content/8/1/622.abstractinfo:eu-repo/semantics/altIdentifier/doi/10.1038/msb.2012.53info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:00:56Zoai:ri.conicet.gov.ar:11336/272667instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:00:56.802CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast |
| title |
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast |
| spellingShingle |
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast Schaber, Jörg signal transduction mathematical modeling stress response yeast |
| title_short |
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast |
| title_full |
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast |
| title_fullStr |
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast |
| title_full_unstemmed |
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast |
| title_sort |
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast |
| dc.creator.none.fl_str_mv |
Schaber, Jörg Baltanas, Rodrigo Bush, Alan Klipp, Edda Colman Lerner, Alejandro Ariel |
| author |
Schaber, Jörg |
| author_facet |
Schaber, Jörg Baltanas, Rodrigo Bush, Alan Klipp, Edda Colman Lerner, Alejandro Ariel |
| author_role |
author |
| author2 |
Baltanas, Rodrigo Bush, Alan Klipp, Edda Colman Lerner, Alejandro Ariel |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
signal transduction mathematical modeling stress response yeast |
| topic |
signal transduction mathematical modeling stress response yeast |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The high osmolarity glycerol (HOG) pathway in yeast serves as a prototype signalling system foreukaryotes. We used an unprecedented amount of data to parameterise 192 models capturingdifferent hypotheses about molecular mechanisms underlying osmo-adaptation and selected a bestapproximating model. This model implied novel mechanisms regulating osmo-adaptation in yeast.The model suggested that (i) the main mechanism for osmo-adaptation is a fast and transient nontranscriptionalHog1-mediated activation of glycerol production, (ii) the transcriptional responseserves to maintain an increased steady-state glycerol production with lowsteady-state Hog1 activity,and (iii) fast negative feedbacks of activated Hog1 on upstream signalling branches serves tostabilise adaptation response. The best approximating model also indicated that homoeostaticadaptive systems with two parallel redundant signalling branches show a more robust and fasterresponse than single-branch systems. We corroborated this notion to a large extent by dedicatedmeasurements of volume recovery in single cells. Our study also demonstrates that systematicallytesting a model ensemble against data has the potential to achieve a better and unbiasedunderstanding of molecular mechanisms. Fil: Schaber, Jörg. Institute For Experimental Internal Medicine; Alemania Fil: Baltanas, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina Fil: Bush, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina Fil: Klipp, Edda. Humboldt-Universität zu Berlin; Alemania Fil: Colman Lerner, Alejandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina |
| description |
The high osmolarity glycerol (HOG) pathway in yeast serves as a prototype signalling system foreukaryotes. We used an unprecedented amount of data to parameterise 192 models capturingdifferent hypotheses about molecular mechanisms underlying osmo-adaptation and selected a bestapproximating model. This model implied novel mechanisms regulating osmo-adaptation in yeast.The model suggested that (i) the main mechanism for osmo-adaptation is a fast and transient nontranscriptionalHog1-mediated activation of glycerol production, (ii) the transcriptional responseserves to maintain an increased steady-state glycerol production with lowsteady-state Hog1 activity,and (iii) fast negative feedbacks of activated Hog1 on upstream signalling branches serves tostabilise adaptation response. The best approximating model also indicated that homoeostaticadaptive systems with two parallel redundant signalling branches show a more robust and fasterresponse than single-branch systems. We corroborated this notion to a large extent by dedicatedmeasurements of volume recovery in single cells. Our study also demonstrates that systematicallytesting a model ensemble against data has the potential to achieve a better and unbiasedunderstanding of molecular mechanisms. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/272667 Schaber, Jörg; Baltanas, Rodrigo; Bush, Alan; Klipp, Edda; Colman Lerner, Alejandro Ariel; Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast; Nature Publishing Group; Molecular Systems Biology; 8; 1; 11-2012; 1-17 1744-4292 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/272667 |
| identifier_str_mv |
Schaber, Jörg; Baltanas, Rodrigo; Bush, Alan; Klipp, Edda; Colman Lerner, Alejandro Ariel; Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast; Nature Publishing Group; Molecular Systems Biology; 8; 1; 11-2012; 1-17 1744-4292 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://msb.embopress.org/content/8/1/622.abstract info:eu-repo/semantics/altIdentifier/doi/10.1038/msb.2012.53 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Nature Publishing Group |
| publisher.none.fl_str_mv |
Nature Publishing Group |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782338889940992 |
| score |
12.982451 |