Collocation method for fractional quantum mechanics

Autores
Amore, Paolo; Fernández, Francisco Marcelo; Hofmann, Christoph P.; Sáenz, Ricardo A.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that it is possible to obtain numerical solutions to quantum mechanical problems involving a fractional Laplacian, using a collocation approach based on little sinc functions, which discretizes the Schrodinger equation on a uniform grid. The ¨ different boundary conditions are naturally implemented using sets of functions with the appropriate behavior. Good convergence properties are observed. A comparison with results based on a Wentzel–Kramers–Brillouin analysis is performed.
Fil: Amore, Paolo. Universidad de Colima; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Hofmann, Christoph P.. Universidad de Colima; México
Fil: Sáenz, Ricardo A.. Universidad de Colima; México
Materia
Collocation method
Fractional quantum mechanics
Wentzel–Kramers–Brillouin
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/279367

id CONICETDig_625579eb5c437ee68e513f03b680d36d
oai_identifier_str oai:ri.conicet.gov.ar:11336/279367
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Collocation method for fractional quantum mechanicsAmore, PaoloFernández, Francisco MarceloHofmann, Christoph P.Sáenz, Ricardo A.Collocation methodFractional quantum mechanicsWentzel–Kramers–Brillouinhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We show that it is possible to obtain numerical solutions to quantum mechanical problems involving a fractional Laplacian, using a collocation approach based on little sinc functions, which discretizes the Schrodinger equation on a uniform grid. The ¨ different boundary conditions are naturally implemented using sets of functions with the appropriate behavior. Good convergence properties are observed. A comparison with results based on a Wentzel–Kramers–Brillouin analysis is performed.Fil: Amore, Paolo. Universidad de Colima; MéxicoFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Hofmann, Christoph P.. Universidad de Colima; MéxicoFil: Sáenz, Ricardo A.. Universidad de Colima; MéxicoAmerican Institute of Physics2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/279367Amore, Paolo; Fernández, Francisco Marcelo; Hofmann, Christoph P.; Sáenz, Ricardo A.; Collocation method for fractional quantum mechanics; American Institute of Physics; Journal of Mathematical Physics; 51; 12; 12-2010; 1-160022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/jmp/article-abstract/51/12/122101/973369/Collocation-method-for-fractional-quantuminfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.3511330info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T12:12:33Zoai:ri.conicet.gov.ar:11336/279367instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 12:12:33.932CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Collocation method for fractional quantum mechanics
title Collocation method for fractional quantum mechanics
spellingShingle Collocation method for fractional quantum mechanics
Amore, Paolo
Collocation method
Fractional quantum mechanics
Wentzel–Kramers–Brillouin
title_short Collocation method for fractional quantum mechanics
title_full Collocation method for fractional quantum mechanics
title_fullStr Collocation method for fractional quantum mechanics
title_full_unstemmed Collocation method for fractional quantum mechanics
title_sort Collocation method for fractional quantum mechanics
dc.creator.none.fl_str_mv Amore, Paolo
Fernández, Francisco Marcelo
Hofmann, Christoph P.
Sáenz, Ricardo A.
author Amore, Paolo
author_facet Amore, Paolo
Fernández, Francisco Marcelo
Hofmann, Christoph P.
Sáenz, Ricardo A.
author_role author
author2 Fernández, Francisco Marcelo
Hofmann, Christoph P.
Sáenz, Ricardo A.
author2_role author
author
author
dc.subject.none.fl_str_mv Collocation method
Fractional quantum mechanics
Wentzel–Kramers–Brillouin
topic Collocation method
Fractional quantum mechanics
Wentzel–Kramers–Brillouin
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that it is possible to obtain numerical solutions to quantum mechanical problems involving a fractional Laplacian, using a collocation approach based on little sinc functions, which discretizes the Schrodinger equation on a uniform grid. The ¨ different boundary conditions are naturally implemented using sets of functions with the appropriate behavior. Good convergence properties are observed. A comparison with results based on a Wentzel–Kramers–Brillouin analysis is performed.
Fil: Amore, Paolo. Universidad de Colima; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Hofmann, Christoph P.. Universidad de Colima; México
Fil: Sáenz, Ricardo A.. Universidad de Colima; México
description We show that it is possible to obtain numerical solutions to quantum mechanical problems involving a fractional Laplacian, using a collocation approach based on little sinc functions, which discretizes the Schrodinger equation on a uniform grid. The ¨ different boundary conditions are naturally implemented using sets of functions with the appropriate behavior. Good convergence properties are observed. A comparison with results based on a Wentzel–Kramers–Brillouin analysis is performed.
publishDate 2010
dc.date.none.fl_str_mv 2010-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/279367
Amore, Paolo; Fernández, Francisco Marcelo; Hofmann, Christoph P.; Sáenz, Ricardo A.; Collocation method for fractional quantum mechanics; American Institute of Physics; Journal of Mathematical Physics; 51; 12; 12-2010; 1-16
0022-2488
CONICET Digital
CONICET
url http://hdl.handle.net/11336/279367
identifier_str_mv Amore, Paolo; Fernández, Francisco Marcelo; Hofmann, Christoph P.; Sáenz, Ricardo A.; Collocation method for fractional quantum mechanics; American Institute of Physics; Journal of Mathematical Physics; 51; 12; 12-2010; 1-16
0022-2488
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/jmp/article-abstract/51/12/122101/973369/Collocation-method-for-fractional-quantum
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3511330
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1856402871326605312
score 13.106097