An approximation to the Woods–Saxon potential based on a contact interaction

Autores
Romaniega, C.; Gadella Urquiza, Manuel; Id Betan, Rodolfo Mohamed; Nieto, Laura Mónica
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a non-relativistic particle subject to a three-dimensional spherical potential consisting of a finite well and a radial δ- δ′ contact interaction at the well edge. This contact potential is defined by appropriate matching conditions for the radial functions, thereby fixing a self-adjoint extension of the non-singular Hamiltonian. Since this model admits exact solutions for the wave function, we are able to characterize and calculate the number of bound states. We also extend some well-known properties of certain spherically symmetric potentials and describe the resonances, defined as unstable quantum states. Based on the Woods–Saxon potential, this configuration is implemented as a first approximation for a mean-field nuclear model. The results derived are tested with experimental and numerical data in the double magic nuclei 132Sn and 208Pb with an extra neutron.
Fil: Romaniega, C.. Universidad de Valladolid; España
Fil: Gadella Urquiza, Manuel. Universidad de Valladolid; España
Fil: Id Betan, Rodolfo Mohamed. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Instituto de Estudios Nucleares y Radiaciones Ionizantes; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Nieto, Laura Mónica. Universidad de Valladolid; España
Materia
Singular potential
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/144160

id CONICETDig_61c1508891fe1727adb05ddf973598bc
oai_identifier_str oai:ri.conicet.gov.ar:11336/144160
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An approximation to the Woods–Saxon potential based on a contact interactionRomaniega, C.Gadella Urquiza, ManuelId Betan, Rodolfo MohamedNieto, Laura MónicaSingular potentialhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study a non-relativistic particle subject to a three-dimensional spherical potential consisting of a finite well and a radial δ- δ′ contact interaction at the well edge. This contact potential is defined by appropriate matching conditions for the radial functions, thereby fixing a self-adjoint extension of the non-singular Hamiltonian. Since this model admits exact solutions for the wave function, we are able to characterize and calculate the number of bound states. We also extend some well-known properties of certain spherically symmetric potentials and describe the resonances, defined as unstable quantum states. Based on the Woods–Saxon potential, this configuration is implemented as a first approximation for a mean-field nuclear model. The results derived are tested with experimental and numerical data in the double magic nuclei 132Sn and 208Pb with an extra neutron.Fil: Romaniega, C.. Universidad de Valladolid; EspañaFil: Gadella Urquiza, Manuel. Universidad de Valladolid; EspañaFil: Id Betan, Rodolfo Mohamed. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Instituto de Estudios Nucleares y Radiaciones Ionizantes; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Nieto, Laura Mónica. Universidad de Valladolid; EspañaSpringer Science and Business Media Deutschland GmbH2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/144160Romaniega, C.; Gadella Urquiza, Manuel; Id Betan, Rodolfo Mohamed; Nieto, Laura Mónica; An approximation to the Woods–Saxon potential based on a contact interaction; Springer Science and Business Media Deutschland GmbH; European Physical Journal Plus; 135; 4; 4-2020; 1-162190-5444CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1140/epjp/s13360-020-00388-7info:eu-repo/semantics/altIdentifier/doi/10.1140/epjp/s13360-020-00388-7info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1911.10050info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:35Zoai:ri.conicet.gov.ar:11336/144160instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:35.854CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An approximation to the Woods–Saxon potential based on a contact interaction
title An approximation to the Woods–Saxon potential based on a contact interaction
spellingShingle An approximation to the Woods–Saxon potential based on a contact interaction
Romaniega, C.
Singular potential
title_short An approximation to the Woods–Saxon potential based on a contact interaction
title_full An approximation to the Woods–Saxon potential based on a contact interaction
title_fullStr An approximation to the Woods–Saxon potential based on a contact interaction
title_full_unstemmed An approximation to the Woods–Saxon potential based on a contact interaction
title_sort An approximation to the Woods–Saxon potential based on a contact interaction
dc.creator.none.fl_str_mv Romaniega, C.
Gadella Urquiza, Manuel
Id Betan, Rodolfo Mohamed
Nieto, Laura Mónica
author Romaniega, C.
author_facet Romaniega, C.
Gadella Urquiza, Manuel
Id Betan, Rodolfo Mohamed
Nieto, Laura Mónica
author_role author
author2 Gadella Urquiza, Manuel
Id Betan, Rodolfo Mohamed
Nieto, Laura Mónica
author2_role author
author
author
dc.subject.none.fl_str_mv Singular potential
topic Singular potential
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a non-relativistic particle subject to a three-dimensional spherical potential consisting of a finite well and a radial δ- δ′ contact interaction at the well edge. This contact potential is defined by appropriate matching conditions for the radial functions, thereby fixing a self-adjoint extension of the non-singular Hamiltonian. Since this model admits exact solutions for the wave function, we are able to characterize and calculate the number of bound states. We also extend some well-known properties of certain spherically symmetric potentials and describe the resonances, defined as unstable quantum states. Based on the Woods–Saxon potential, this configuration is implemented as a first approximation for a mean-field nuclear model. The results derived are tested with experimental and numerical data in the double magic nuclei 132Sn and 208Pb with an extra neutron.
Fil: Romaniega, C.. Universidad de Valladolid; España
Fil: Gadella Urquiza, Manuel. Universidad de Valladolid; España
Fil: Id Betan, Rodolfo Mohamed. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Instituto de Estudios Nucleares y Radiaciones Ionizantes; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Nieto, Laura Mónica. Universidad de Valladolid; España
description We study a non-relativistic particle subject to a three-dimensional spherical potential consisting of a finite well and a radial δ- δ′ contact interaction at the well edge. This contact potential is defined by appropriate matching conditions for the radial functions, thereby fixing a self-adjoint extension of the non-singular Hamiltonian. Since this model admits exact solutions for the wave function, we are able to characterize and calculate the number of bound states. We also extend some well-known properties of certain spherically symmetric potentials and describe the resonances, defined as unstable quantum states. Based on the Woods–Saxon potential, this configuration is implemented as a first approximation for a mean-field nuclear model. The results derived are tested with experimental and numerical data in the double magic nuclei 132Sn and 208Pb with an extra neutron.
publishDate 2020
dc.date.none.fl_str_mv 2020-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/144160
Romaniega, C.; Gadella Urquiza, Manuel; Id Betan, Rodolfo Mohamed; Nieto, Laura Mónica; An approximation to the Woods–Saxon potential based on a contact interaction; Springer Science and Business Media Deutschland GmbH; European Physical Journal Plus; 135; 4; 4-2020; 1-16
2190-5444
CONICET Digital
CONICET
url http://hdl.handle.net/11336/144160
identifier_str_mv Romaniega, C.; Gadella Urquiza, Manuel; Id Betan, Rodolfo Mohamed; Nieto, Laura Mónica; An approximation to the Woods–Saxon potential based on a contact interaction; Springer Science and Business Media Deutschland GmbH; European Physical Journal Plus; 135; 4; 4-2020; 1-16
2190-5444
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1140/epjp/s13360-020-00388-7
info:eu-repo/semantics/altIdentifier/doi/10.1140/epjp/s13360-020-00388-7
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1911.10050
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Science and Business Media Deutschland GmbH
publisher.none.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613698867429376
score 13.070432