Integrated modeling of the peer-to-peer markets in the energy industry
- Autores
- Alvarez, Gonzalo Exequiel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Over time, the number of smart grids installed worldwide is gradually increasing. However, the major portion of the required electricity is still being produced by traditional large-scale and centralized power systems. The main requirement, then, is to study and develop mathematical methods that attend the integration between the two systems previously announced. In this paper, a novel model that addresses this issue is presented. The model minimizes the total operating cost of the large-scale system considering the participation of the smart grid as a dynamic entity, entailing a close relationship between both systems. This approach distinguishes the novel proposal from others that solve similar situations by taking into account the two systems in isolation. Besides, the models that represent the most common organizational structures of the smart grids are also presented in this paper. They are needed to develop the integrated model. Many similar problems in the literature are solved by implementing decomposition techniques, which might obtain a local optimum different from the global one. By contrast, problems with this proposal are solved by using mixed-integer linear programming models that ensure the reaching of a global optimum. The real test case is the integrated Argentine large-scale system and the Armstrong smart grid. Results indicate that the novel model can reach solutions that are 5% lower in comparison with the traditional techniques of considering in isolation. Efficient CPU times enable the possibility of promptly obtaining solutions if there is any change in the parameters. In addition, other benefits, apart from the economical reductions, are also achieved. Operating information closer to the reality of both systems is obtained because it considers the effects of the smart grid in large-scale system solving.
Fil: Alvarez, Gonzalo Exequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
DECENTRALIZED SYSTEMS
ELECTRICITY INDUSTRY
ENERGY SYSTEM INTEGRATION
OPTIMIZATION
P2P ELECTRICITY TRADING
TRADITIONAL SYSTEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172601
Ver los metadatos del registro completo
id |
CONICETDig_610a148dac04d52555a36295ff466f49 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172601 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Integrated modeling of the peer-to-peer markets in the energy industryAlvarez, Gonzalo ExequielDECENTRALIZED SYSTEMSELECTRICITY INDUSTRYENERGY SYSTEM INTEGRATIONOPTIMIZATIONP2P ELECTRICITY TRADINGTRADITIONAL SYSTEMShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Over time, the number of smart grids installed worldwide is gradually increasing. However, the major portion of the required electricity is still being produced by traditional large-scale and centralized power systems. The main requirement, then, is to study and develop mathematical methods that attend the integration between the two systems previously announced. In this paper, a novel model that addresses this issue is presented. The model minimizes the total operating cost of the large-scale system considering the participation of the smart grid as a dynamic entity, entailing a close relationship between both systems. This approach distinguishes the novel proposal from others that solve similar situations by taking into account the two systems in isolation. Besides, the models that represent the most common organizational structures of the smart grids are also presented in this paper. They are needed to develop the integrated model. Many similar problems in the literature are solved by implementing decomposition techniques, which might obtain a local optimum different from the global one. By contrast, problems with this proposal are solved by using mixed-integer linear programming models that ensure the reaching of a global optimum. The real test case is the integrated Argentine large-scale system and the Armstrong smart grid. Results indicate that the novel model can reach solutions that are 5% lower in comparison with the traditional techniques of considering in isolation. Efficient CPU times enable the possibility of promptly obtaining solutions if there is any change in the parameters. In addition, other benefits, apart from the economical reductions, are also achieved. Operating information closer to the reality of both systems is obtained because it considers the effects of the smart grid in large-scale system solving.Fil: Alvarez, Gonzalo Exequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaGrowing Science2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172601Alvarez, Gonzalo Exequiel; Integrated modeling of the peer-to-peer markets in the energy industry; Growing Science; International Journal of Industrial Engineering Computations; 13; 1; 12-2022; 101-1181923-29261923-2934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5267/j.ijiec.2021.7.002info:eu-repo/semantics/altIdentifier/url/http://growingscience.com/beta/ijiec/5100-integrated-modeling-of-the-peer-to-peer-markets-in-the-energy-industry.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:43Zoai:ri.conicet.gov.ar:11336/172601instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:44.056CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Integrated modeling of the peer-to-peer markets in the energy industry |
title |
Integrated modeling of the peer-to-peer markets in the energy industry |
spellingShingle |
Integrated modeling of the peer-to-peer markets in the energy industry Alvarez, Gonzalo Exequiel DECENTRALIZED SYSTEMS ELECTRICITY INDUSTRY ENERGY SYSTEM INTEGRATION OPTIMIZATION P2P ELECTRICITY TRADING TRADITIONAL SYSTEMS |
title_short |
Integrated modeling of the peer-to-peer markets in the energy industry |
title_full |
Integrated modeling of the peer-to-peer markets in the energy industry |
title_fullStr |
Integrated modeling of the peer-to-peer markets in the energy industry |
title_full_unstemmed |
Integrated modeling of the peer-to-peer markets in the energy industry |
title_sort |
Integrated modeling of the peer-to-peer markets in the energy industry |
dc.creator.none.fl_str_mv |
Alvarez, Gonzalo Exequiel |
author |
Alvarez, Gonzalo Exequiel |
author_facet |
Alvarez, Gonzalo Exequiel |
author_role |
author |
dc.subject.none.fl_str_mv |
DECENTRALIZED SYSTEMS ELECTRICITY INDUSTRY ENERGY SYSTEM INTEGRATION OPTIMIZATION P2P ELECTRICITY TRADING TRADITIONAL SYSTEMS |
topic |
DECENTRALIZED SYSTEMS ELECTRICITY INDUSTRY ENERGY SYSTEM INTEGRATION OPTIMIZATION P2P ELECTRICITY TRADING TRADITIONAL SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Over time, the number of smart grids installed worldwide is gradually increasing. However, the major portion of the required electricity is still being produced by traditional large-scale and centralized power systems. The main requirement, then, is to study and develop mathematical methods that attend the integration between the two systems previously announced. In this paper, a novel model that addresses this issue is presented. The model minimizes the total operating cost of the large-scale system considering the participation of the smart grid as a dynamic entity, entailing a close relationship between both systems. This approach distinguishes the novel proposal from others that solve similar situations by taking into account the two systems in isolation. Besides, the models that represent the most common organizational structures of the smart grids are also presented in this paper. They are needed to develop the integrated model. Many similar problems in the literature are solved by implementing decomposition techniques, which might obtain a local optimum different from the global one. By contrast, problems with this proposal are solved by using mixed-integer linear programming models that ensure the reaching of a global optimum. The real test case is the integrated Argentine large-scale system and the Armstrong smart grid. Results indicate that the novel model can reach solutions that are 5% lower in comparison with the traditional techniques of considering in isolation. Efficient CPU times enable the possibility of promptly obtaining solutions if there is any change in the parameters. In addition, other benefits, apart from the economical reductions, are also achieved. Operating information closer to the reality of both systems is obtained because it considers the effects of the smart grid in large-scale system solving. Fil: Alvarez, Gonzalo Exequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Over time, the number of smart grids installed worldwide is gradually increasing. However, the major portion of the required electricity is still being produced by traditional large-scale and centralized power systems. The main requirement, then, is to study and develop mathematical methods that attend the integration between the two systems previously announced. In this paper, a novel model that addresses this issue is presented. The model minimizes the total operating cost of the large-scale system considering the participation of the smart grid as a dynamic entity, entailing a close relationship between both systems. This approach distinguishes the novel proposal from others that solve similar situations by taking into account the two systems in isolation. Besides, the models that represent the most common organizational structures of the smart grids are also presented in this paper. They are needed to develop the integrated model. Many similar problems in the literature are solved by implementing decomposition techniques, which might obtain a local optimum different from the global one. By contrast, problems with this proposal are solved by using mixed-integer linear programming models that ensure the reaching of a global optimum. The real test case is the integrated Argentine large-scale system and the Armstrong smart grid. Results indicate that the novel model can reach solutions that are 5% lower in comparison with the traditional techniques of considering in isolation. Efficient CPU times enable the possibility of promptly obtaining solutions if there is any change in the parameters. In addition, other benefits, apart from the economical reductions, are also achieved. Operating information closer to the reality of both systems is obtained because it considers the effects of the smart grid in large-scale system solving. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172601 Alvarez, Gonzalo Exequiel; Integrated modeling of the peer-to-peer markets in the energy industry; Growing Science; International Journal of Industrial Engineering Computations; 13; 1; 12-2022; 101-118 1923-2926 1923-2934 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/172601 |
identifier_str_mv |
Alvarez, Gonzalo Exequiel; Integrated modeling of the peer-to-peer markets in the energy industry; Growing Science; International Journal of Industrial Engineering Computations; 13; 1; 12-2022; 101-118 1923-2926 1923-2934 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5267/j.ijiec.2021.7.002 info:eu-repo/semantics/altIdentifier/url/http://growingscience.com/beta/ijiec/5100-integrated-modeling-of-the-peer-to-peer-markets-in-the-energy-industry.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Growing Science |
publisher.none.fl_str_mv |
Growing Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269480398356480 |
score |
13.13397 |