Extended symmetries at the black hole horizon

Autores
Donnay, Laura; Giribet, Gaston Enrique; González, Alejandro Hernán; Pino, Miguel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove that non-extremal black holes in four-dimensional general relativity exhibit an infinite-dimensional symmetry in their near horizon region. By prescribing a physically sensible set of boundary conditions at the horizon, we derive the algebra of asymptotic Killing vectors, which is shown to be infinite-dimensional and includes, in particular, two sets of supertranslations and two mutually commuting copies of the Virasoro algebra. We define the surface charges associated to the asymptotic diffeomorphisms that preserve the boundary conditions and discuss the subtleties of this definition, such as the integrability conditions and the correct definition of the Dirac brackets. When evaluated on the stationary solutions, the only non-vanishing charges are the zero-modes. One of them reproduces the Bekenstein-Hawking entropy of Kerr black holes. We also study the extremal limit, recovering the NHEK geometry. In this singular case, where the algebra of charges and the integrability conditions get modified, we find that the computation of the zero-modes correctly reproduces the black hole entropy. Furthermore, we analyze the case of three spacetime dimensions, in which the integrability conditions notably simplify and the field equations can be solved analytically to produce a family of exact solutions that realize the boundary conditions explicitly. We examine other features, such as the form of the algebra in the extremal limit and the relation to other works in the literature.
Fil: Donnay, Laura. Université Libre de Bruxelles; Bélgica
Fil: Giribet, Gaston Enrique. Université Libre de Bruxelles; Bélgica. Pontificia Universidad Católica de Valparaíso; Chile. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: González, Alejandro Hernán. Université Libre de Bruxelles; Bélgica
Fil: Pino, Miguel. Universidad de Santiago de Chile; Chile
Materia
Agujeros negros
Algebras infinito-dimensionales
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/49285

id CONICETDig_60f90e0413ce90541ff47166a8c62ef4
oai_identifier_str oai:ri.conicet.gov.ar:11336/49285
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Extended symmetries at the black hole horizonDonnay, LauraGiribet, Gaston EnriqueGonzález, Alejandro HernánPino, MiguelAgujeros negrosAlgebras infinito-dimensionaleshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We prove that non-extremal black holes in four-dimensional general relativity exhibit an infinite-dimensional symmetry in their near horizon region. By prescribing a physically sensible set of boundary conditions at the horizon, we derive the algebra of asymptotic Killing vectors, which is shown to be infinite-dimensional and includes, in particular, two sets of supertranslations and two mutually commuting copies of the Virasoro algebra. We define the surface charges associated to the asymptotic diffeomorphisms that preserve the boundary conditions and discuss the subtleties of this definition, such as the integrability conditions and the correct definition of the Dirac brackets. When evaluated on the stationary solutions, the only non-vanishing charges are the zero-modes. One of them reproduces the Bekenstein-Hawking entropy of Kerr black holes. We also study the extremal limit, recovering the NHEK geometry. In this singular case, where the algebra of charges and the integrability conditions get modified, we find that the computation of the zero-modes correctly reproduces the black hole entropy. Furthermore, we analyze the case of three spacetime dimensions, in which the integrability conditions notably simplify and the field equations can be solved analytically to produce a family of exact solutions that realize the boundary conditions explicitly. We examine other features, such as the form of the algebra in the extremal limit and the relation to other works in the literature.Fil: Donnay, Laura. Université Libre de Bruxelles; BélgicaFil: Giribet, Gaston Enrique. Université Libre de Bruxelles; Bélgica. Pontificia Universidad Católica de Valparaíso; Chile. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: González, Alejandro Hernán. Université Libre de Bruxelles; BélgicaFil: Pino, Miguel. Universidad de Santiago de Chile; ChileSpringer2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49285Donnay, Laura; Giribet, Gaston Enrique; González, Alejandro Hernán; Pino, Miguel; Extended symmetries at the black hole horizon; Springer; Journal of High Energy Physics; 100; 9; 9-2016; 1-241126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP09(2016)100info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP09(2016)100info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:31Zoai:ri.conicet.gov.ar:11336/49285instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:32.056CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Extended symmetries at the black hole horizon
title Extended symmetries at the black hole horizon
spellingShingle Extended symmetries at the black hole horizon
Donnay, Laura
Agujeros negros
Algebras infinito-dimensionales
title_short Extended symmetries at the black hole horizon
title_full Extended symmetries at the black hole horizon
title_fullStr Extended symmetries at the black hole horizon
title_full_unstemmed Extended symmetries at the black hole horizon
title_sort Extended symmetries at the black hole horizon
dc.creator.none.fl_str_mv Donnay, Laura
Giribet, Gaston Enrique
González, Alejandro Hernán
Pino, Miguel
author Donnay, Laura
author_facet Donnay, Laura
Giribet, Gaston Enrique
González, Alejandro Hernán
Pino, Miguel
author_role author
author2 Giribet, Gaston Enrique
González, Alejandro Hernán
Pino, Miguel
author2_role author
author
author
dc.subject.none.fl_str_mv Agujeros negros
Algebras infinito-dimensionales
topic Agujeros negros
Algebras infinito-dimensionales
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove that non-extremal black holes in four-dimensional general relativity exhibit an infinite-dimensional symmetry in their near horizon region. By prescribing a physically sensible set of boundary conditions at the horizon, we derive the algebra of asymptotic Killing vectors, which is shown to be infinite-dimensional and includes, in particular, two sets of supertranslations and two mutually commuting copies of the Virasoro algebra. We define the surface charges associated to the asymptotic diffeomorphisms that preserve the boundary conditions and discuss the subtleties of this definition, such as the integrability conditions and the correct definition of the Dirac brackets. When evaluated on the stationary solutions, the only non-vanishing charges are the zero-modes. One of them reproduces the Bekenstein-Hawking entropy of Kerr black holes. We also study the extremal limit, recovering the NHEK geometry. In this singular case, where the algebra of charges and the integrability conditions get modified, we find that the computation of the zero-modes correctly reproduces the black hole entropy. Furthermore, we analyze the case of three spacetime dimensions, in which the integrability conditions notably simplify and the field equations can be solved analytically to produce a family of exact solutions that realize the boundary conditions explicitly. We examine other features, such as the form of the algebra in the extremal limit and the relation to other works in the literature.
Fil: Donnay, Laura. Université Libre de Bruxelles; Bélgica
Fil: Giribet, Gaston Enrique. Université Libre de Bruxelles; Bélgica. Pontificia Universidad Católica de Valparaíso; Chile. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: González, Alejandro Hernán. Université Libre de Bruxelles; Bélgica
Fil: Pino, Miguel. Universidad de Santiago de Chile; Chile
description We prove that non-extremal black holes in four-dimensional general relativity exhibit an infinite-dimensional symmetry in their near horizon region. By prescribing a physically sensible set of boundary conditions at the horizon, we derive the algebra of asymptotic Killing vectors, which is shown to be infinite-dimensional and includes, in particular, two sets of supertranslations and two mutually commuting copies of the Virasoro algebra. We define the surface charges associated to the asymptotic diffeomorphisms that preserve the boundary conditions and discuss the subtleties of this definition, such as the integrability conditions and the correct definition of the Dirac brackets. When evaluated on the stationary solutions, the only non-vanishing charges are the zero-modes. One of them reproduces the Bekenstein-Hawking entropy of Kerr black holes. We also study the extremal limit, recovering the NHEK geometry. In this singular case, where the algebra of charges and the integrability conditions get modified, we find that the computation of the zero-modes correctly reproduces the black hole entropy. Furthermore, we analyze the case of three spacetime dimensions, in which the integrability conditions notably simplify and the field equations can be solved analytically to produce a family of exact solutions that realize the boundary conditions explicitly. We examine other features, such as the form of the algebra in the extremal limit and the relation to other works in the literature.
publishDate 2016
dc.date.none.fl_str_mv 2016-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/49285
Donnay, Laura; Giribet, Gaston Enrique; González, Alejandro Hernán; Pino, Miguel; Extended symmetries at the black hole horizon; Springer; Journal of High Energy Physics; 100; 9; 9-2016; 1-24
1126-6708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/49285
identifier_str_mv Donnay, Laura; Giribet, Gaston Enrique; González, Alejandro Hernán; Pino, Miguel; Extended symmetries at the black hole horizon; Springer; Journal of High Energy Physics; 100; 9; 9-2016; 1-24
1126-6708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP09(2016)100
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP09(2016)100
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269804908511232
score 13.13397