Extended symmetries at the black hole horizon
- Autores
- Donnay, Laura; Giribet, Gaston Enrique; González, Alejandro Hernán; Pino, Miguel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that non-extremal black holes in four-dimensional general relativity exhibit an infinite-dimensional symmetry in their near horizon region. By prescribing a physically sensible set of boundary conditions at the horizon, we derive the algebra of asymptotic Killing vectors, which is shown to be infinite-dimensional and includes, in particular, two sets of supertranslations and two mutually commuting copies of the Virasoro algebra. We define the surface charges associated to the asymptotic diffeomorphisms that preserve the boundary conditions and discuss the subtleties of this definition, such as the integrability conditions and the correct definition of the Dirac brackets. When evaluated on the stationary solutions, the only non-vanishing charges are the zero-modes. One of them reproduces the Bekenstein-Hawking entropy of Kerr black holes. We also study the extremal limit, recovering the NHEK geometry. In this singular case, where the algebra of charges and the integrability conditions get modified, we find that the computation of the zero-modes correctly reproduces the black hole entropy. Furthermore, we analyze the case of three spacetime dimensions, in which the integrability conditions notably simplify and the field equations can be solved analytically to produce a family of exact solutions that realize the boundary conditions explicitly. We examine other features, such as the form of the algebra in the extremal limit and the relation to other works in the literature.
Fil: Donnay, Laura. Université Libre de Bruxelles; Bélgica
Fil: Giribet, Gaston Enrique. Université Libre de Bruxelles; Bélgica. Pontificia Universidad Católica de Valparaíso; Chile. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: González, Alejandro Hernán. Université Libre de Bruxelles; Bélgica
Fil: Pino, Miguel. Universidad de Santiago de Chile; Chile - Materia
-
Agujeros negros
Algebras infinito-dimensionales - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/49285
Ver los metadatos del registro completo
id |
CONICETDig_60f90e0413ce90541ff47166a8c62ef4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/49285 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Extended symmetries at the black hole horizonDonnay, LauraGiribet, Gaston EnriqueGonzález, Alejandro HernánPino, MiguelAgujeros negrosAlgebras infinito-dimensionaleshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We prove that non-extremal black holes in four-dimensional general relativity exhibit an infinite-dimensional symmetry in their near horizon region. By prescribing a physically sensible set of boundary conditions at the horizon, we derive the algebra of asymptotic Killing vectors, which is shown to be infinite-dimensional and includes, in particular, two sets of supertranslations and two mutually commuting copies of the Virasoro algebra. We define the surface charges associated to the asymptotic diffeomorphisms that preserve the boundary conditions and discuss the subtleties of this definition, such as the integrability conditions and the correct definition of the Dirac brackets. When evaluated on the stationary solutions, the only non-vanishing charges are the zero-modes. One of them reproduces the Bekenstein-Hawking entropy of Kerr black holes. We also study the extremal limit, recovering the NHEK geometry. In this singular case, where the algebra of charges and the integrability conditions get modified, we find that the computation of the zero-modes correctly reproduces the black hole entropy. Furthermore, we analyze the case of three spacetime dimensions, in which the integrability conditions notably simplify and the field equations can be solved analytically to produce a family of exact solutions that realize the boundary conditions explicitly. We examine other features, such as the form of the algebra in the extremal limit and the relation to other works in the literature.Fil: Donnay, Laura. Université Libre de Bruxelles; BélgicaFil: Giribet, Gaston Enrique. Université Libre de Bruxelles; Bélgica. Pontificia Universidad Católica de Valparaíso; Chile. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: González, Alejandro Hernán. Université Libre de Bruxelles; BélgicaFil: Pino, Miguel. Universidad de Santiago de Chile; ChileSpringer2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49285Donnay, Laura; Giribet, Gaston Enrique; González, Alejandro Hernán; Pino, Miguel; Extended symmetries at the black hole horizon; Springer; Journal of High Energy Physics; 100; 9; 9-2016; 1-241126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP09(2016)100info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP09(2016)100info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:31Zoai:ri.conicet.gov.ar:11336/49285instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:32.056CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Extended symmetries at the black hole horizon |
title |
Extended symmetries at the black hole horizon |
spellingShingle |
Extended symmetries at the black hole horizon Donnay, Laura Agujeros negros Algebras infinito-dimensionales |
title_short |
Extended symmetries at the black hole horizon |
title_full |
Extended symmetries at the black hole horizon |
title_fullStr |
Extended symmetries at the black hole horizon |
title_full_unstemmed |
Extended symmetries at the black hole horizon |
title_sort |
Extended symmetries at the black hole horizon |
dc.creator.none.fl_str_mv |
Donnay, Laura Giribet, Gaston Enrique González, Alejandro Hernán Pino, Miguel |
author |
Donnay, Laura |
author_facet |
Donnay, Laura Giribet, Gaston Enrique González, Alejandro Hernán Pino, Miguel |
author_role |
author |
author2 |
Giribet, Gaston Enrique González, Alejandro Hernán Pino, Miguel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Agujeros negros Algebras infinito-dimensionales |
topic |
Agujeros negros Algebras infinito-dimensionales |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove that non-extremal black holes in four-dimensional general relativity exhibit an infinite-dimensional symmetry in their near horizon region. By prescribing a physically sensible set of boundary conditions at the horizon, we derive the algebra of asymptotic Killing vectors, which is shown to be infinite-dimensional and includes, in particular, two sets of supertranslations and two mutually commuting copies of the Virasoro algebra. We define the surface charges associated to the asymptotic diffeomorphisms that preserve the boundary conditions and discuss the subtleties of this definition, such as the integrability conditions and the correct definition of the Dirac brackets. When evaluated on the stationary solutions, the only non-vanishing charges are the zero-modes. One of them reproduces the Bekenstein-Hawking entropy of Kerr black holes. We also study the extremal limit, recovering the NHEK geometry. In this singular case, where the algebra of charges and the integrability conditions get modified, we find that the computation of the zero-modes correctly reproduces the black hole entropy. Furthermore, we analyze the case of three spacetime dimensions, in which the integrability conditions notably simplify and the field equations can be solved analytically to produce a family of exact solutions that realize the boundary conditions explicitly. We examine other features, such as the form of the algebra in the extremal limit and the relation to other works in the literature. Fil: Donnay, Laura. Université Libre de Bruxelles; Bélgica Fil: Giribet, Gaston Enrique. Université Libre de Bruxelles; Bélgica. Pontificia Universidad Católica de Valparaíso; Chile. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: González, Alejandro Hernán. Université Libre de Bruxelles; Bélgica Fil: Pino, Miguel. Universidad de Santiago de Chile; Chile |
description |
We prove that non-extremal black holes in four-dimensional general relativity exhibit an infinite-dimensional symmetry in their near horizon region. By prescribing a physically sensible set of boundary conditions at the horizon, we derive the algebra of asymptotic Killing vectors, which is shown to be infinite-dimensional and includes, in particular, two sets of supertranslations and two mutually commuting copies of the Virasoro algebra. We define the surface charges associated to the asymptotic diffeomorphisms that preserve the boundary conditions and discuss the subtleties of this definition, such as the integrability conditions and the correct definition of the Dirac brackets. When evaluated on the stationary solutions, the only non-vanishing charges are the zero-modes. One of them reproduces the Bekenstein-Hawking entropy of Kerr black holes. We also study the extremal limit, recovering the NHEK geometry. In this singular case, where the algebra of charges and the integrability conditions get modified, we find that the computation of the zero-modes correctly reproduces the black hole entropy. Furthermore, we analyze the case of three spacetime dimensions, in which the integrability conditions notably simplify and the field equations can be solved analytically to produce a family of exact solutions that realize the boundary conditions explicitly. We examine other features, such as the form of the algebra in the extremal limit and the relation to other works in the literature. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/49285 Donnay, Laura; Giribet, Gaston Enrique; González, Alejandro Hernán; Pino, Miguel; Extended symmetries at the black hole horizon; Springer; Journal of High Energy Physics; 100; 9; 9-2016; 1-24 1126-6708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/49285 |
identifier_str_mv |
Donnay, Laura; Giribet, Gaston Enrique; González, Alejandro Hernán; Pino, Miguel; Extended symmetries at the black hole horizon; Springer; Journal of High Energy Physics; 100; 9; 9-2016; 1-24 1126-6708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP09(2016)100 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP09(2016)100 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269804908511232 |
score |
13.13397 |