Dynamics of the scenery flow and geometry of measures
- Autores
- Käenmäki, Antti; Sahlsten, Tuomas; Shmerkin, Pablo Sebastian
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We employ the ergodic-theoretic machinery of scenery flows to address classical geometric measure-theoretic problems on Euclidean spaces. Our main results include a sharp version of the conical density theorem, which we show to be closely linked to rectifiability. Moreover, we show that the dimension theory of measure-theoretical porosity can be reduced back to its settheoretic version, that Hausdorff and packing dimensions yield the same maximal dimension for porous and even mean porous measures, and that extremal measures exist and can be chosen to satisfy a generalized notion of self-similarity. These are sharp general formulations of phenomena that had been earlier found to hold in a number of special cases.
Fil: Käenmäki, Antti. Universidad de Jyvaskyla; Finlandia
Fil: Sahlsten, Tuomas. The Hebrew University of Jerusalem; Israel
Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
SCENERY FLOW
FRACTAL DISTRIBUTIONS
DIMENSION
RECITFIABILITY
POROSITY
CONICAL DENSITIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38583
Ver los metadatos del registro completo
id |
CONICETDig_6084f59eb1e780d0e2d739b6a02d7bc2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38583 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamics of the scenery flow and geometry of measuresKäenmäki, AnttiSahlsten, TuomasShmerkin, Pablo SebastianSCENERY FLOWFRACTAL DISTRIBUTIONSDIMENSIONRECITFIABILITYPOROSITYCONICAL DENSITIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We employ the ergodic-theoretic machinery of scenery flows to address classical geometric measure-theoretic problems on Euclidean spaces. Our main results include a sharp version of the conical density theorem, which we show to be closely linked to rectifiability. Moreover, we show that the dimension theory of measure-theoretical porosity can be reduced back to its settheoretic version, that Hausdorff and packing dimensions yield the same maximal dimension for porous and even mean porous measures, and that extremal measures exist and can be chosen to satisfy a generalized notion of self-similarity. These are sharp general formulations of phenomena that had been earlier found to hold in a number of special cases.Fil: Käenmäki, Antti. Universidad de Jyvaskyla; FinlandiaFil: Sahlsten, Tuomas. The Hebrew University of Jerusalem; IsraelFil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaLondon Mathematical Society2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/38583Käenmäki, Antti; Sahlsten, Tuomas; Shmerkin, Pablo Sebastian; Dynamics of the scenery flow and geometry of measures; London Mathematical Society; Proceedings of the London Mathematical Society; 110; 5; 3-2015; 1248-12800024-6115CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/plms/pdv003/abstractinfo:eu-repo/semantics/altIdentifier/doi/10.1112/plms/pdv003info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1401.0231info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:23Zoai:ri.conicet.gov.ar:11336/38583instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:23.375CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamics of the scenery flow and geometry of measures |
title |
Dynamics of the scenery flow and geometry of measures |
spellingShingle |
Dynamics of the scenery flow and geometry of measures Käenmäki, Antti SCENERY FLOW FRACTAL DISTRIBUTIONS DIMENSION RECITFIABILITY POROSITY CONICAL DENSITIES |
title_short |
Dynamics of the scenery flow and geometry of measures |
title_full |
Dynamics of the scenery flow and geometry of measures |
title_fullStr |
Dynamics of the scenery flow and geometry of measures |
title_full_unstemmed |
Dynamics of the scenery flow and geometry of measures |
title_sort |
Dynamics of the scenery flow and geometry of measures |
dc.creator.none.fl_str_mv |
Käenmäki, Antti Sahlsten, Tuomas Shmerkin, Pablo Sebastian |
author |
Käenmäki, Antti |
author_facet |
Käenmäki, Antti Sahlsten, Tuomas Shmerkin, Pablo Sebastian |
author_role |
author |
author2 |
Sahlsten, Tuomas Shmerkin, Pablo Sebastian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
SCENERY FLOW FRACTAL DISTRIBUTIONS DIMENSION RECITFIABILITY POROSITY CONICAL DENSITIES |
topic |
SCENERY FLOW FRACTAL DISTRIBUTIONS DIMENSION RECITFIABILITY POROSITY CONICAL DENSITIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We employ the ergodic-theoretic machinery of scenery flows to address classical geometric measure-theoretic problems on Euclidean spaces. Our main results include a sharp version of the conical density theorem, which we show to be closely linked to rectifiability. Moreover, we show that the dimension theory of measure-theoretical porosity can be reduced back to its settheoretic version, that Hausdorff and packing dimensions yield the same maximal dimension for porous and even mean porous measures, and that extremal measures exist and can be chosen to satisfy a generalized notion of self-similarity. These are sharp general formulations of phenomena that had been earlier found to hold in a number of special cases. Fil: Käenmäki, Antti. Universidad de Jyvaskyla; Finlandia Fil: Sahlsten, Tuomas. The Hebrew University of Jerusalem; Israel Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We employ the ergodic-theoretic machinery of scenery flows to address classical geometric measure-theoretic problems on Euclidean spaces. Our main results include a sharp version of the conical density theorem, which we show to be closely linked to rectifiability. Moreover, we show that the dimension theory of measure-theoretical porosity can be reduced back to its settheoretic version, that Hausdorff and packing dimensions yield the same maximal dimension for porous and even mean porous measures, and that extremal measures exist and can be chosen to satisfy a generalized notion of self-similarity. These are sharp general formulations of phenomena that had been earlier found to hold in a number of special cases. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38583 Käenmäki, Antti; Sahlsten, Tuomas; Shmerkin, Pablo Sebastian; Dynamics of the scenery flow and geometry of measures; London Mathematical Society; Proceedings of the London Mathematical Society; 110; 5; 3-2015; 1248-1280 0024-6115 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38583 |
identifier_str_mv |
Käenmäki, Antti; Sahlsten, Tuomas; Shmerkin, Pablo Sebastian; Dynamics of the scenery flow and geometry of measures; London Mathematical Society; Proceedings of the London Mathematical Society; 110; 5; 3-2015; 1248-1280 0024-6115 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/plms/pdv003/abstract info:eu-repo/semantics/altIdentifier/doi/10.1112/plms/pdv003 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1401.0231 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
London Mathematical Society |
publisher.none.fl_str_mv |
London Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613630834769920 |
score |
13.070432 |