Mesoscopic fluctuations in biharmonically driven flux qubits

Autores
Ferron, Alejandro; Dominguez, Daniel; Sanchez, Maria Jose
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate flux qubits driven by a biharmonic magnetic signal, with a phase lag that acts as an effective time reversal broken parameter. The driving induced transition rate between the ground and the excited state of the flux qubit can be thought as an effective transmitance, profiting from a direct analogy between interference effects at avoided level crossings and scattering events in disordered electronic systems. For time scales prior to full relaxation but large compared to the decoherence time, this characteristic rate has been accessed experimentally and its sensitivity with both the phase lag and the dc flux detuning explored. In this way signatures of Universal Conductance Fluctuations-like effects have recently been analized in flux qubits and compared with a phenomenological model that only accounts for decoherence, as a classical noise. We here solve the full dynamics of the driven flux qubit in contact with a quantum bath employing the Floquet Markov Master equation. Within this formalism relaxation and decoherence rates result strongly dependent on both the phase lag and the dc flux detuning. Consequently, the associated pattern of fluctuations in the characteristic rates display important differences with those obtained within the mentioned phenomenological model. In particular we demonstrate the Weak Localization-like effect in the averages values of the relaxation rate. Our predictions can be tested for accessible, but longer time scales than the current experimental times.
Fil: Ferron, Alejandro. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnologica; Argentina
Fil: Dominguez, Daniel. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Física (cab). Grupo de Teoria de Solidos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sanchez, Maria Jose. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Física (cab). Grupo de Teoria de Solidos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Fluz Qubit
Lzs
Mesoscopic Fluctuation
Double Driving
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19591

id CONICETDig_60298ef4b7ed3e1e5b023c3c4da323ba
oai_identifier_str oai:ri.conicet.gov.ar:11336/19591
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mesoscopic fluctuations in biharmonically driven flux qubitsFerron, AlejandroDominguez, DanielSanchez, Maria JoseFluz QubitLzsMesoscopic FluctuationDouble Drivinghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate flux qubits driven by a biharmonic magnetic signal, with a phase lag that acts as an effective time reversal broken parameter. The driving induced transition rate between the ground and the excited state of the flux qubit can be thought as an effective transmitance, profiting from a direct analogy between interference effects at avoided level crossings and scattering events in disordered electronic systems. For time scales prior to full relaxation but large compared to the decoherence time, this characteristic rate has been accessed experimentally and its sensitivity with both the phase lag and the dc flux detuning explored. In this way signatures of Universal Conductance Fluctuations-like effects have recently been analized in flux qubits and compared with a phenomenological model that only accounts for decoherence, as a classical noise. We here solve the full dynamics of the driven flux qubit in contact with a quantum bath employing the Floquet Markov Master equation. Within this formalism relaxation and decoherence rates result strongly dependent on both the phase lag and the dc flux detuning. Consequently, the associated pattern of fluctuations in the characteristic rates display important differences with those obtained within the mentioned phenomenological model. In particular we demonstrate the Weak Localization-like effect in the averages values of the relaxation rate. Our predictions can be tested for accessible, but longer time scales than the current experimental times.Fil: Ferron, Alejandro. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnologica; ArgentinaFil: Dominguez, Daniel. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Física (cab). Grupo de Teoria de Solidos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sanchez, Maria Jose. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Física (cab). Grupo de Teoria de Solidos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2017-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19591Ferron, Alejandro; Dominguez, Daniel; Sanchez, Maria Jose; Mesoscopic fluctuations in biharmonically driven flux qubits; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 95; 4; 15-1-2017; 1-91098-01211550-235XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.045412info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.95.045412info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:46:15Zoai:ri.conicet.gov.ar:11336/19591instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:46:15.848CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mesoscopic fluctuations in biharmonically driven flux qubits
title Mesoscopic fluctuations in biharmonically driven flux qubits
spellingShingle Mesoscopic fluctuations in biharmonically driven flux qubits
Ferron, Alejandro
Fluz Qubit
Lzs
Mesoscopic Fluctuation
Double Driving
title_short Mesoscopic fluctuations in biharmonically driven flux qubits
title_full Mesoscopic fluctuations in biharmonically driven flux qubits
title_fullStr Mesoscopic fluctuations in biharmonically driven flux qubits
title_full_unstemmed Mesoscopic fluctuations in biharmonically driven flux qubits
title_sort Mesoscopic fluctuations in biharmonically driven flux qubits
dc.creator.none.fl_str_mv Ferron, Alejandro
Dominguez, Daniel
Sanchez, Maria Jose
author Ferron, Alejandro
author_facet Ferron, Alejandro
Dominguez, Daniel
Sanchez, Maria Jose
author_role author
author2 Dominguez, Daniel
Sanchez, Maria Jose
author2_role author
author
dc.subject.none.fl_str_mv Fluz Qubit
Lzs
Mesoscopic Fluctuation
Double Driving
topic Fluz Qubit
Lzs
Mesoscopic Fluctuation
Double Driving
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate flux qubits driven by a biharmonic magnetic signal, with a phase lag that acts as an effective time reversal broken parameter. The driving induced transition rate between the ground and the excited state of the flux qubit can be thought as an effective transmitance, profiting from a direct analogy between interference effects at avoided level crossings and scattering events in disordered electronic systems. For time scales prior to full relaxation but large compared to the decoherence time, this characteristic rate has been accessed experimentally and its sensitivity with both the phase lag and the dc flux detuning explored. In this way signatures of Universal Conductance Fluctuations-like effects have recently been analized in flux qubits and compared with a phenomenological model that only accounts for decoherence, as a classical noise. We here solve the full dynamics of the driven flux qubit in contact with a quantum bath employing the Floquet Markov Master equation. Within this formalism relaxation and decoherence rates result strongly dependent on both the phase lag and the dc flux detuning. Consequently, the associated pattern of fluctuations in the characteristic rates display important differences with those obtained within the mentioned phenomenological model. In particular we demonstrate the Weak Localization-like effect in the averages values of the relaxation rate. Our predictions can be tested for accessible, but longer time scales than the current experimental times.
Fil: Ferron, Alejandro. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnologica; Argentina
Fil: Dominguez, Daniel. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Física (cab). Grupo de Teoria de Solidos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sanchez, Maria Jose. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Física (cab). Grupo de Teoria de Solidos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We investigate flux qubits driven by a biharmonic magnetic signal, with a phase lag that acts as an effective time reversal broken parameter. The driving induced transition rate between the ground and the excited state of the flux qubit can be thought as an effective transmitance, profiting from a direct analogy between interference effects at avoided level crossings and scattering events in disordered electronic systems. For time scales prior to full relaxation but large compared to the decoherence time, this characteristic rate has been accessed experimentally and its sensitivity with both the phase lag and the dc flux detuning explored. In this way signatures of Universal Conductance Fluctuations-like effects have recently been analized in flux qubits and compared with a phenomenological model that only accounts for decoherence, as a classical noise. We here solve the full dynamics of the driven flux qubit in contact with a quantum bath employing the Floquet Markov Master equation. Within this formalism relaxation and decoherence rates result strongly dependent on both the phase lag and the dc flux detuning. Consequently, the associated pattern of fluctuations in the characteristic rates display important differences with those obtained within the mentioned phenomenological model. In particular we demonstrate the Weak Localization-like effect in the averages values of the relaxation rate. Our predictions can be tested for accessible, but longer time scales than the current experimental times.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19591
Ferron, Alejandro; Dominguez, Daniel; Sanchez, Maria Jose; Mesoscopic fluctuations in biharmonically driven flux qubits; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 95; 4; 15-1-2017; 1-9
1098-0121
1550-235X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19591
identifier_str_mv Ferron, Alejandro; Dominguez, Daniel; Sanchez, Maria Jose; Mesoscopic fluctuations in biharmonically driven flux qubits; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 95; 4; 15-1-2017; 1-9
1098-0121
1550-235X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.045412
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.95.045412
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083560246607872
score 13.22299