Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter
- Autores
- Zeuner, F.; Feller, A.; Iglesias, Francisco Andres; Solanki, S.K.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Context. Scattering polarization in the Sr I 4607.3 Å line observed with high resolution is an important diagnostic of the Sun's atmosphere and magnetism at small spatial scales. Investigating the scattering polarization altered by the Hanle effect is key to constraining the role of small-scale magnetic activity in solar atmospheric activity and energy balance. At present, spatially resolved observations of this diagnostic are rare and have not been reported as close to the disk center as for μ = 0.6. Aims. Our aim is to measure the scattering polarization in the Sr I line at μ = 0.6 and to identify the spatial fluctuations with a statistical approach. Methods. Using the Fast Solar Polarimeter (FSP) mounted on the TESOS filtergraph at the German Vacuum Tower Telescope (VTT) in Tenerife, Spain, we measured both the spatially resolved full Stokes parameters of the Sr I line at μ = 0.6 and the center-to-limb variation of the spatially averaged Stokes parameters. Results. We find that the center-to-limb variation of the scattering polarization in the Sr I line measured with FSP is consistent with previous measurements. A statistical analysis of Stokes Q/I (i.e., the linear polarization component parallel to the solar limb), sampled with 0.16″ pixel-1 in the line core of Sr I reveals that the signal strength is inversely correlated with the intensity in the continuum. We find stronger linear polarimetric signals corresponding to dark areas in the Stokes I continuum image (intergranular lanes). In contrast, independent measurements at μ = 0.3 show a positive correlation of Q/I with respect to the continuum intensity. We estimate that the subregion diameter responsible for the excess Q/I signal is on the order of 0.5″-1″. Conclusions. The presented observations and the statistical analysis of Q/I signals at μ = 0.6 complement reported scattering polarization observations as well as simulations. The FSP has proven to be a suitable instrument to measure spatially resolved scattering polarization signals. In the future, a systematic center-to-limb series of observations with subgranular spatial resolution and increased polarimetric sensitivity (<10-3) compared to that in the present study is needed in order to investigate the change in trend with μ that the comparison of our results with the literature suggests.
Fil: Zeuner, F.. Universität Göttingen; Alemania. Institut für Sonnensystemforschung; Alemania
Fil: Feller, A.. Institut für Sonnensystemforschung; Alemania
Fil: Iglesias, Francisco Andres. Institut für Sonnensystemforschung; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Solanki, S.K.. Institut für Sonnensystemforschung; Alemania. Kyung Hee University; Corea del Sur - Materia
-
INSTRUMENTATION: POLARIMETERS
SCATTERING
SUN: PHOTOSPHERE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100428
Ver los metadatos del registro completo
id |
CONICETDig_5fff0aa5503e3d2bfc357b29630cd13f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100428 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar PolarimeterZeuner, F.Feller, A.Iglesias, Francisco AndresSolanki, S.K.INSTRUMENTATION: POLARIMETERSSCATTERINGSUN: PHOTOSPHEREhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Scattering polarization in the Sr I 4607.3 Å line observed with high resolution is an important diagnostic of the Sun's atmosphere and magnetism at small spatial scales. Investigating the scattering polarization altered by the Hanle effect is key to constraining the role of small-scale magnetic activity in solar atmospheric activity and energy balance. At present, spatially resolved observations of this diagnostic are rare and have not been reported as close to the disk center as for μ = 0.6. Aims. Our aim is to measure the scattering polarization in the Sr I line at μ = 0.6 and to identify the spatial fluctuations with a statistical approach. Methods. Using the Fast Solar Polarimeter (FSP) mounted on the TESOS filtergraph at the German Vacuum Tower Telescope (VTT) in Tenerife, Spain, we measured both the spatially resolved full Stokes parameters of the Sr I line at μ = 0.6 and the center-to-limb variation of the spatially averaged Stokes parameters. Results. We find that the center-to-limb variation of the scattering polarization in the Sr I line measured with FSP is consistent with previous measurements. A statistical analysis of Stokes Q/I (i.e., the linear polarization component parallel to the solar limb), sampled with 0.16″ pixel-1 in the line core of Sr I reveals that the signal strength is inversely correlated with the intensity in the continuum. We find stronger linear polarimetric signals corresponding to dark areas in the Stokes I continuum image (intergranular lanes). In contrast, independent measurements at μ = 0.3 show a positive correlation of Q/I with respect to the continuum intensity. We estimate that the subregion diameter responsible for the excess Q/I signal is on the order of 0.5″-1″. Conclusions. The presented observations and the statistical analysis of Q/I signals at μ = 0.6 complement reported scattering polarization observations as well as simulations. The FSP has proven to be a suitable instrument to measure spatially resolved scattering polarization signals. In the future, a systematic center-to-limb series of observations with subgranular spatial resolution and increased polarimetric sensitivity (<10-3) compared to that in the present study is needed in order to investigate the change in trend with μ that the comparison of our results with the literature suggests.Fil: Zeuner, F.. Universität Göttingen; Alemania. Institut für Sonnensystemforschung; AlemaniaFil: Feller, A.. Institut für Sonnensystemforschung; AlemaniaFil: Iglesias, Francisco Andres. Institut für Sonnensystemforschung; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Solanki, S.K.. Institut für Sonnensystemforschung; Alemania. Kyung Hee University; Corea del SurEDP Sciences2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100428Zeuner, F.; Feller, A.; Iglesias, Francisco Andres; Solanki, S.K.; Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter; EDP Sciences; Astronomy and Astrophysics; 619; 11-2018; 1-80004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201833241info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2018/11/aa33241-18/aa33241-18.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:16:54Zoai:ri.conicet.gov.ar:11336/100428instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:16:55.11CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter |
title |
Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter |
spellingShingle |
Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter Zeuner, F. INSTRUMENTATION: POLARIMETERS SCATTERING SUN: PHOTOSPHERE |
title_short |
Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter |
title_full |
Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter |
title_fullStr |
Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter |
title_full_unstemmed |
Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter |
title_sort |
Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter |
dc.creator.none.fl_str_mv |
Zeuner, F. Feller, A. Iglesias, Francisco Andres Solanki, S.K. |
author |
Zeuner, F. |
author_facet |
Zeuner, F. Feller, A. Iglesias, Francisco Andres Solanki, S.K. |
author_role |
author |
author2 |
Feller, A. Iglesias, Francisco Andres Solanki, S.K. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
INSTRUMENTATION: POLARIMETERS SCATTERING SUN: PHOTOSPHERE |
topic |
INSTRUMENTATION: POLARIMETERS SCATTERING SUN: PHOTOSPHERE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Context. Scattering polarization in the Sr I 4607.3 Å line observed with high resolution is an important diagnostic of the Sun's atmosphere and magnetism at small spatial scales. Investigating the scattering polarization altered by the Hanle effect is key to constraining the role of small-scale magnetic activity in solar atmospheric activity and energy balance. At present, spatially resolved observations of this diagnostic are rare and have not been reported as close to the disk center as for μ = 0.6. Aims. Our aim is to measure the scattering polarization in the Sr I line at μ = 0.6 and to identify the spatial fluctuations with a statistical approach. Methods. Using the Fast Solar Polarimeter (FSP) mounted on the TESOS filtergraph at the German Vacuum Tower Telescope (VTT) in Tenerife, Spain, we measured both the spatially resolved full Stokes parameters of the Sr I line at μ = 0.6 and the center-to-limb variation of the spatially averaged Stokes parameters. Results. We find that the center-to-limb variation of the scattering polarization in the Sr I line measured with FSP is consistent with previous measurements. A statistical analysis of Stokes Q/I (i.e., the linear polarization component parallel to the solar limb), sampled with 0.16″ pixel-1 in the line core of Sr I reveals that the signal strength is inversely correlated with the intensity in the continuum. We find stronger linear polarimetric signals corresponding to dark areas in the Stokes I continuum image (intergranular lanes). In contrast, independent measurements at μ = 0.3 show a positive correlation of Q/I with respect to the continuum intensity. We estimate that the subregion diameter responsible for the excess Q/I signal is on the order of 0.5″-1″. Conclusions. The presented observations and the statistical analysis of Q/I signals at μ = 0.6 complement reported scattering polarization observations as well as simulations. The FSP has proven to be a suitable instrument to measure spatially resolved scattering polarization signals. In the future, a systematic center-to-limb series of observations with subgranular spatial resolution and increased polarimetric sensitivity (<10-3) compared to that in the present study is needed in order to investigate the change in trend with μ that the comparison of our results with the literature suggests. Fil: Zeuner, F.. Universität Göttingen; Alemania. Institut für Sonnensystemforschung; Alemania Fil: Feller, A.. Institut für Sonnensystemforschung; Alemania Fil: Iglesias, Francisco Andres. Institut für Sonnensystemforschung; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Solanki, S.K.. Institut für Sonnensystemforschung; Alemania. Kyung Hee University; Corea del Sur |
description |
Context. Scattering polarization in the Sr I 4607.3 Å line observed with high resolution is an important diagnostic of the Sun's atmosphere and magnetism at small spatial scales. Investigating the scattering polarization altered by the Hanle effect is key to constraining the role of small-scale magnetic activity in solar atmospheric activity and energy balance. At present, spatially resolved observations of this diagnostic are rare and have not been reported as close to the disk center as for μ = 0.6. Aims. Our aim is to measure the scattering polarization in the Sr I line at μ = 0.6 and to identify the spatial fluctuations with a statistical approach. Methods. Using the Fast Solar Polarimeter (FSP) mounted on the TESOS filtergraph at the German Vacuum Tower Telescope (VTT) in Tenerife, Spain, we measured both the spatially resolved full Stokes parameters of the Sr I line at μ = 0.6 and the center-to-limb variation of the spatially averaged Stokes parameters. Results. We find that the center-to-limb variation of the scattering polarization in the Sr I line measured with FSP is consistent with previous measurements. A statistical analysis of Stokes Q/I (i.e., the linear polarization component parallel to the solar limb), sampled with 0.16″ pixel-1 in the line core of Sr I reveals that the signal strength is inversely correlated with the intensity in the continuum. We find stronger linear polarimetric signals corresponding to dark areas in the Stokes I continuum image (intergranular lanes). In contrast, independent measurements at μ = 0.3 show a positive correlation of Q/I with respect to the continuum intensity. We estimate that the subregion diameter responsible for the excess Q/I signal is on the order of 0.5″-1″. Conclusions. The presented observations and the statistical analysis of Q/I signals at μ = 0.6 complement reported scattering polarization observations as well as simulations. The FSP has proven to be a suitable instrument to measure spatially resolved scattering polarization signals. In the future, a systematic center-to-limb series of observations with subgranular spatial resolution and increased polarimetric sensitivity (<10-3) compared to that in the present study is needed in order to investigate the change in trend with μ that the comparison of our results with the literature suggests. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100428 Zeuner, F.; Feller, A.; Iglesias, Francisco Andres; Solanki, S.K.; Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter; EDP Sciences; Astronomy and Astrophysics; 619; 11-2018; 1-8 0004-6361 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100428 |
identifier_str_mv |
Zeuner, F.; Feller, A.; Iglesias, Francisco Andres; Solanki, S.K.; Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter; EDP Sciences; Astronomy and Astrophysics; 619; 11-2018; 1-8 0004-6361 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201833241 info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2018/11/aa33241-18/aa33241-18.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083317827371008 |
score |
13.22299 |