Convergent flow in a two-layer system and plateau development
- Autores
- Gratton, Julio; Perazzo, Carlos Alberto
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In order to describe the development of plateaus such as the Tibet and the Altiplano we extend the two-layer model used in a previous paper [C. A. Perazzo and J. Gratton, Phys. Fluids22, 056603 (2010)] to reproduce the evolution of mountain ranges. As before, we consider the convergent motion of a system of two liquid layers to simulate the crust and the upper mantle that form a lithospheric plate, but now we assume that the viscosity of the crust falls off abruptly at a specified depth. We derive a nonlinear differential equation for the evolution of the thickness of the crust. The solution of this equation shows that the process consists of a first stage in which a peaked range is formed and grows until its root reaches the depth where its viscosity drops. After that the range ceases to grow in height and a flat plateau appears at its top. In this second stage the plateau width increases linearly with time as its sides move outward as traveling waves. We derive simple approximate formulas for various properties of the plateau and its evolution. © 2011 American Institute of Physics.
Fil: Gratton, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Perazzo, Carlos Alberto. Universidad Favaloro; Argentina - Materia
-
Convergent flow
Two layer system
Plateau development - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61494
Ver los metadatos del registro completo
id |
CONICETDig_5fefcc5cb3b5b5df8bd646219b72b950 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61494 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergent flow in a two-layer system and plateau developmentGratton, JulioPerazzo, Carlos AlbertoConvergent flowTwo layer systemPlateau developmenthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In order to describe the development of plateaus such as the Tibet and the Altiplano we extend the two-layer model used in a previous paper [C. A. Perazzo and J. Gratton, Phys. Fluids22, 056603 (2010)] to reproduce the evolution of mountain ranges. As before, we consider the convergent motion of a system of two liquid layers to simulate the crust and the upper mantle that form a lithospheric plate, but now we assume that the viscosity of the crust falls off abruptly at a specified depth. We derive a nonlinear differential equation for the evolution of the thickness of the crust. The solution of this equation shows that the process consists of a first stage in which a peaked range is formed and grows until its root reaches the depth where its viscosity drops. After that the range ceases to grow in height and a flat plateau appears at its top. In this second stage the plateau width increases linearly with time as its sides move outward as traveling waves. We derive simple approximate formulas for various properties of the plateau and its evolution. © 2011 American Institute of Physics.Fil: Gratton, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Perazzo, Carlos Alberto. Universidad Favaloro; ArgentinaAmerican Institute of Physics2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61494Gratton, Julio; Perazzo, Carlos Alberto; Convergent flow in a two-layer system and plateau development; American Institute of Physics; Physics of Fluids; 23; 4; 4-2011; 1-51070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pof.aip.org/resource/1/phfle6/v23/i4/p046601_s1info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3578481info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:20:56Zoai:ri.conicet.gov.ar:11336/61494instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:20:56.431CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergent flow in a two-layer system and plateau development |
title |
Convergent flow in a two-layer system and plateau development |
spellingShingle |
Convergent flow in a two-layer system and plateau development Gratton, Julio Convergent flow Two layer system Plateau development |
title_short |
Convergent flow in a two-layer system and plateau development |
title_full |
Convergent flow in a two-layer system and plateau development |
title_fullStr |
Convergent flow in a two-layer system and plateau development |
title_full_unstemmed |
Convergent flow in a two-layer system and plateau development |
title_sort |
Convergent flow in a two-layer system and plateau development |
dc.creator.none.fl_str_mv |
Gratton, Julio Perazzo, Carlos Alberto |
author |
Gratton, Julio |
author_facet |
Gratton, Julio Perazzo, Carlos Alberto |
author_role |
author |
author2 |
Perazzo, Carlos Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Convergent flow Two layer system Plateau development |
topic |
Convergent flow Two layer system Plateau development |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In order to describe the development of plateaus such as the Tibet and the Altiplano we extend the two-layer model used in a previous paper [C. A. Perazzo and J. Gratton, Phys. Fluids22, 056603 (2010)] to reproduce the evolution of mountain ranges. As before, we consider the convergent motion of a system of two liquid layers to simulate the crust and the upper mantle that form a lithospheric plate, but now we assume that the viscosity of the crust falls off abruptly at a specified depth. We derive a nonlinear differential equation for the evolution of the thickness of the crust. The solution of this equation shows that the process consists of a first stage in which a peaked range is formed and grows until its root reaches the depth where its viscosity drops. After that the range ceases to grow in height and a flat plateau appears at its top. In this second stage the plateau width increases linearly with time as its sides move outward as traveling waves. We derive simple approximate formulas for various properties of the plateau and its evolution. © 2011 American Institute of Physics. Fil: Gratton, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: Perazzo, Carlos Alberto. Universidad Favaloro; Argentina |
description |
In order to describe the development of plateaus such as the Tibet and the Altiplano we extend the two-layer model used in a previous paper [C. A. Perazzo and J. Gratton, Phys. Fluids22, 056603 (2010)] to reproduce the evolution of mountain ranges. As before, we consider the convergent motion of a system of two liquid layers to simulate the crust and the upper mantle that form a lithospheric plate, but now we assume that the viscosity of the crust falls off abruptly at a specified depth. We derive a nonlinear differential equation for the evolution of the thickness of the crust. The solution of this equation shows that the process consists of a first stage in which a peaked range is formed and grows until its root reaches the depth where its viscosity drops. After that the range ceases to grow in height and a flat plateau appears at its top. In this second stage the plateau width increases linearly with time as its sides move outward as traveling waves. We derive simple approximate formulas for various properties of the plateau and its evolution. © 2011 American Institute of Physics. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61494 Gratton, Julio; Perazzo, Carlos Alberto; Convergent flow in a two-layer system and plateau development; American Institute of Physics; Physics of Fluids; 23; 4; 4-2011; 1-5 1070-6631 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61494 |
identifier_str_mv |
Gratton, Julio; Perazzo, Carlos Alberto; Convergent flow in a two-layer system and plateau development; American Institute of Physics; Physics of Fluids; 23; 4; 4-2011; 1-5 1070-6631 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pof.aip.org/resource/1/phfle6/v23/i4/p046601_s1 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3578481 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083358073815040 |
score |
13.22299 |