Path on graphs and associated quantum groupoids
- Autores
- Trinchero, Roberto Carlos
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given any simple biorientable graph it is shown that there exists a weak *-Hopf algebra constructed on the vector space of graded endomorphisms of essential paths on the graph. This construction is based on a direct sum decomposition of the space of paths into orthogonal subspaces one of which is the space of essential paths. Two simple examples are worked out with certain detail, the ADE graph A3 and the affine graph A[2]. For the first example the weak *-Hopf algebra coincides with the so called double triangle algebra. No use is made of Ocneanu’s cell calculus.
Fil: Trinchero, Roberto Carlos. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Quantum groupoids
Conformal Field theory
Graphs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9482
Ver los metadatos del registro completo
id |
CONICETDig_5fab4f5403c64ae9fbef61f57975449b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9482 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Path on graphs and associated quantum groupoidsTrinchero, Roberto CarlosQuantum groupoidsConformal Field theoryGraphshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given any simple biorientable graph it is shown that there exists a weak *-Hopf algebra constructed on the vector space of graded endomorphisms of essential paths on the graph. This construction is based on a direct sum decomposition of the space of paths into orthogonal subspaces one of which is the space of essential paths. Two simple examples are worked out with certain detail, the ADE graph A3 and the affine graph A[2]. For the first example the weak *-Hopf algebra coincides with the so called double triangle algebra. No use is made of Ocneanu’s cell calculus.Fil: Trinchero, Roberto Carlos. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUnión Matemática Argentina2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9482Trinchero, Roberto Carlos; Path on graphs and associated quantum groupoids; Unión Matemática Argentina; Revista de la Unión Matemática Argentina ; 51; 2; 9-2010; 147-1700041-69321669-9637enginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol51info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:00:05Zoai:ri.conicet.gov.ar:11336/9482instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:00:05.739CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Path on graphs and associated quantum groupoids |
title |
Path on graphs and associated quantum groupoids |
spellingShingle |
Path on graphs and associated quantum groupoids Trinchero, Roberto Carlos Quantum groupoids Conformal Field theory Graphs |
title_short |
Path on graphs and associated quantum groupoids |
title_full |
Path on graphs and associated quantum groupoids |
title_fullStr |
Path on graphs and associated quantum groupoids |
title_full_unstemmed |
Path on graphs and associated quantum groupoids |
title_sort |
Path on graphs and associated quantum groupoids |
dc.creator.none.fl_str_mv |
Trinchero, Roberto Carlos |
author |
Trinchero, Roberto Carlos |
author_facet |
Trinchero, Roberto Carlos |
author_role |
author |
dc.subject.none.fl_str_mv |
Quantum groupoids Conformal Field theory Graphs |
topic |
Quantum groupoids Conformal Field theory Graphs |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given any simple biorientable graph it is shown that there exists a weak *-Hopf algebra constructed on the vector space of graded endomorphisms of essential paths on the graph. This construction is based on a direct sum decomposition of the space of paths into orthogonal subspaces one of which is the space of essential paths. Two simple examples are worked out with certain detail, the ADE graph A3 and the affine graph A[2]. For the first example the weak *-Hopf algebra coincides with the so called double triangle algebra. No use is made of Ocneanu’s cell calculus. Fil: Trinchero, Roberto Carlos. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Given any simple biorientable graph it is shown that there exists a weak *-Hopf algebra constructed on the vector space of graded endomorphisms of essential paths on the graph. This construction is based on a direct sum decomposition of the space of paths into orthogonal subspaces one of which is the space of essential paths. Two simple examples are worked out with certain detail, the ADE graph A3 and the affine graph A[2]. For the first example the weak *-Hopf algebra coincides with the so called double triangle algebra. No use is made of Ocneanu’s cell calculus. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9482 Trinchero, Roberto Carlos; Path on graphs and associated quantum groupoids; Unión Matemática Argentina; Revista de la Unión Matemática Argentina ; 51; 2; 9-2010; 147-170 0041-6932 1669-9637 |
url |
http://hdl.handle.net/11336/9482 |
identifier_str_mv |
Trinchero, Roberto Carlos; Path on graphs and associated quantum groupoids; Unión Matemática Argentina; Revista de la Unión Matemática Argentina ; 51; 2; 9-2010; 147-170 0041-6932 1669-9637 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol51 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083139833692160 |
score |
13.22299 |