Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films
- Autores
 - Belletti, Gustavo Daniel; Dalosto, Sergio Daniel; Tinte, Silvia Noemi
 - Año de publicación
 - 2014
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - We report first-principle atomistic simulations of the effect of local strain gradients on the nanoscale domain morphology of free-standing PbTiO3 ultrathin films. First, the ferroelectric properties of free films at the atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells), we find flux-closure domain structures whose morphology is thickness dependent. A critical value of 20 unit cells is observed: thinner films show structures with 90º domain loops, whereas thicker ones develop, in addition, 180º domain walls, giving rise to structures of the Landau-Lifshitz type. When a local and compressive strain gradient at the top surface is imposed, the gradient is able to switch the polarization of the downward domains, but not to the opposite ones. The evolution of the domain pattern as a function of the strain gradient strength consequently depends on the film thickness. Our simulations indicate that in thinner films, first the 90º domain loops migrate towards the strain-gradient region, and then the polarization in that zone is gradually switched. In thicker films, instead, the switching in the strain-gradient region is progressive, not involving domain-wall motion, which is attributed to less mobile 180º domain walls. The ferroelectric switching is understood based on the knowledge of the local atomic properties, and the results confirm that mechanical flexoelectricity provides a means to control the nanodomain pattern in ferroelectric systems.
Fil: Belletti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Tinte, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina - Materia
 - 
            
        Thin Films
Ferroelctricity
Atomistic
Classical Force Field - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Consejo Nacional de Investigaciones Científicas y Técnicas
 - OAI Identificador
 - oai:ri.conicet.gov.ar:11336/4416
 
Ver los metadatos del registro completo
| id | 
                                CONICETDig_5ee122c0277ed8bbba934fd989985dc6 | 
      
|---|---|
| oai_identifier_str | 
                                oai:ri.conicet.gov.ar:11336/4416 | 
      
| network_acronym_str | 
                                CONICETDig | 
      
| repository_id_str | 
                                3498 | 
      
| network_name_str | 
                                CONICET Digital (CONICET) | 
      
| spelling | 
                                Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin filmsBelletti, Gustavo DanielDalosto, Sergio DanielTinte, Silvia NoemiThin FilmsFerroelctricityAtomisticClassical Force Fieldhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We report first-principle atomistic simulations of the effect of local strain gradients on the nanoscale domain morphology of free-standing PbTiO3 ultrathin films. First, the ferroelectric properties of free films at the atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells), we find flux-closure domain structures whose morphology is thickness dependent. A critical value of 20 unit cells is observed: thinner films show structures with 90º domain loops, whereas thicker ones develop, in addition, 180º domain walls, giving rise to structures of the Landau-Lifshitz type. When a local and compressive strain gradient at the top surface is imposed, the gradient is able to switch the polarization of the downward domains, but not to the opposite ones. The evolution of the domain pattern as a function of the strain gradient strength consequently depends on the film thickness. Our simulations indicate that in thinner films, first the 90º domain loops migrate towards the strain-gradient region, and then the polarization in that zone is gradually switched. In thicker films, instead, the switching in the strain-gradient region is progressive, not involving domain-wall motion, which is attributed to less mobile 180º domain walls. The ferroelectric switching is understood based on the knowledge of the local atomic properties, and the results confirm that mechanical flexoelectricity provides a means to control the nanodomain pattern in ferroelectric systems.Fil: Belletti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Tinte, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaAmerican Physical Society2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4416Belletti, Gustavo Daniel; Dalosto, Sergio Daniel; Tinte, Silvia Noemi; Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films; American Physical Society; Physical Review B; 89; 17; 4-2014; 174104-1741040163-1829enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.174104info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.89.174104info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1408.5081info:eu-repo/semantics/altIdentifier/issn/0163-1829info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:02:19Zoai:ri.conicet.gov.ar:11336/4416instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:02:19.814CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
      
| dc.title.none.fl_str_mv | 
                                Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films | 
      
| title | 
                                Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films | 
      
| spellingShingle | 
                                Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films Belletti, Gustavo Daniel Thin Films Ferroelctricity Atomistic Classical Force Field  | 
      
| title_short | 
                                Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films | 
      
| title_full | 
                                Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films | 
      
| title_fullStr | 
                                Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films | 
      
| title_full_unstemmed | 
                                Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films | 
      
| title_sort | 
                                Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films | 
      
| dc.creator.none.fl_str_mv | 
                                Belletti, Gustavo Daniel Dalosto, Sergio Daniel Tinte, Silvia Noemi  | 
      
| author | 
                                Belletti, Gustavo Daniel | 
      
| author_facet | 
                                Belletti, Gustavo Daniel Dalosto, Sergio Daniel Tinte, Silvia Noemi  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Dalosto, Sergio Daniel Tinte, Silvia Noemi  | 
      
| author2_role | 
                                author author  | 
      
| dc.subject.none.fl_str_mv | 
                                Thin Films Ferroelctricity Atomistic Classical Force Field  | 
      
| topic | 
                                Thin Films Ferroelctricity Atomistic Classical Force Field  | 
      
| purl_subject.fl_str_mv | 
                                https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1  | 
      
| dc.description.none.fl_txt_mv | 
                                We report first-principle atomistic simulations of the effect of local strain gradients on the nanoscale domain morphology of free-standing PbTiO3 ultrathin films. First, the ferroelectric properties of free films at the atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells), we find flux-closure domain structures whose morphology is thickness dependent. A critical value of 20 unit cells is observed: thinner films show structures with 90º domain loops, whereas thicker ones develop, in addition, 180º domain walls, giving rise to structures of the Landau-Lifshitz type. When a local and compressive strain gradient at the top surface is imposed, the gradient is able to switch the polarization of the downward domains, but not to the opposite ones. The evolution of the domain pattern as a function of the strain gradient strength consequently depends on the film thickness. Our simulations indicate that in thinner films, first the 90º domain loops migrate towards the strain-gradient region, and then the polarization in that zone is gradually switched. In thicker films, instead, the switching in the strain-gradient region is progressive, not involving domain-wall motion, which is attributed to less mobile 180º domain walls. The ferroelectric switching is understood based on the knowledge of the local atomic properties, and the results confirm that mechanical flexoelectricity provides a means to control the nanodomain pattern in ferroelectric systems. Fil: Belletti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina Fil: Tinte, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina  | 
      
| description | 
                                We report first-principle atomistic simulations of the effect of local strain gradients on the nanoscale domain morphology of free-standing PbTiO3 ultrathin films. First, the ferroelectric properties of free films at the atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells), we find flux-closure domain structures whose morphology is thickness dependent. A critical value of 20 unit cells is observed: thinner films show structures with 90º domain loops, whereas thicker ones develop, in addition, 180º domain walls, giving rise to structures of the Landau-Lifshitz type. When a local and compressive strain gradient at the top surface is imposed, the gradient is able to switch the polarization of the downward domains, but not to the opposite ones. The evolution of the domain pattern as a function of the strain gradient strength consequently depends on the film thickness. Our simulations indicate that in thinner films, first the 90º domain loops migrate towards the strain-gradient region, and then the polarization in that zone is gradually switched. In thicker films, instead, the switching in the strain-gradient region is progressive, not involving domain-wall motion, which is attributed to less mobile 180º domain walls. The ferroelectric switching is understood based on the knowledge of the local atomic properties, and the results confirm that mechanical flexoelectricity provides a means to control the nanodomain pattern in ferroelectric systems. | 
      
| publishDate | 
                                2014 | 
      
| dc.date.none.fl_str_mv | 
                                2014-04 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://hdl.handle.net/11336/4416 Belletti, Gustavo Daniel; Dalosto, Sergio Daniel; Tinte, Silvia Noemi; Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films; American Physical Society; Physical Review B; 89; 17; 4-2014; 174104-174104 0163-1829  | 
      
| url | 
                                http://hdl.handle.net/11336/4416 | 
      
| identifier_str_mv | 
                                Belletti, Gustavo Daniel; Dalosto, Sergio Daniel; Tinte, Silvia Noemi; Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films; American Physical Society; Physical Review B; 89; 17; 4-2014; 174104-174104 0163-1829  | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.174104 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.89.174104 info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1408.5081 info:eu-repo/semantics/altIdentifier/issn/0163-1829  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf application/pdf application/pdf application/pdf  | 
      
| dc.publisher.none.fl_str_mv | 
                                American Physical Society | 
      
| publisher.none.fl_str_mv | 
                                American Physical Society | 
      
| dc.source.none.fl_str_mv | 
                                reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas  | 
      
| reponame_str | 
                                CONICET Digital (CONICET) | 
      
| collection | 
                                CONICET Digital (CONICET) | 
      
| instname_str | 
                                Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.name.fl_str_mv | 
                                CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.mail.fl_str_mv | 
                                dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
      
| _version_ | 
                                1847426785291010048 | 
      
| score | 
                                13.10058 |