Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films

Autores
Belletti, Gustavo Daniel; Dalosto, Sergio Daniel; Tinte, Silvia Noemi
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We report first-principle atomistic simulations of the effect of local strain gradients on the nanoscale domain morphology of free-standing PbTiO3 ultrathin films. First, the ferroelectric properties of free films at the atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells), we find flux-closure domain structures whose morphology is thickness dependent. A critical value of 20 unit cells is observed: thinner films show structures with 90º domain loops, whereas thicker ones develop, in addition, 180º domain walls, giving rise to structures of the Landau-Lifshitz type. When a local and compressive strain gradient at the top surface is imposed, the gradient is able to switch the polarization of the downward domains, but not to the opposite ones. The evolution of the domain pattern as a function of the strain gradient strength consequently depends on the film thickness. Our simulations indicate that in thinner films, first the 90º domain loops migrate towards the strain-gradient region, and then the polarization in that zone is gradually switched. In thicker films, instead, the switching in the strain-gradient region is progressive, not involving domain-wall motion, which is attributed to less mobile 180º domain walls. The ferroelectric switching is understood based on the knowledge of the local atomic properties, and the results confirm that mechanical flexoelectricity provides a means to control the nanodomain pattern in ferroelectric systems.
Fil: Belletti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Tinte, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Materia
Thin Films
Ferroelctricity
Atomistic
Classical Force Field
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4416

id CONICETDig_5ee122c0277ed8bbba934fd989985dc6
oai_identifier_str oai:ri.conicet.gov.ar:11336/4416
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin filmsBelletti, Gustavo DanielDalosto, Sergio DanielTinte, Silvia NoemiThin FilmsFerroelctricityAtomisticClassical Force Fieldhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We report first-principle atomistic simulations of the effect of local strain gradients on the nanoscale domain morphology of free-standing PbTiO3 ultrathin films. First, the ferroelectric properties of free films at the atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells), we find flux-closure domain structures whose morphology is thickness dependent. A critical value of 20 unit cells is observed: thinner films show structures with 90º domain loops, whereas thicker ones develop, in addition, 180º domain walls, giving rise to structures of the Landau-Lifshitz type. When a local and compressive strain gradient at the top surface is imposed, the gradient is able to switch the polarization of the downward domains, but not to the opposite ones. The evolution of the domain pattern as a function of the strain gradient strength consequently depends on the film thickness. Our simulations indicate that in thinner films, first the 90º domain loops migrate towards the strain-gradient region, and then the polarization in that zone is gradually switched. In thicker films, instead, the switching in the strain-gradient region is progressive, not involving domain-wall motion, which is attributed to less mobile 180º domain walls. The ferroelectric switching is understood based on the knowledge of the local atomic properties, and the results confirm that mechanical flexoelectricity provides a means to control the nanodomain pattern in ferroelectric systems.Fil: Belletti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Tinte, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaAmerican Physical Society2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4416Belletti, Gustavo Daniel; Dalosto, Sergio Daniel; Tinte, Silvia Noemi; Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films; American Physical Society; Physical Review B; 89; 17; 4-2014; 174104-1741040163-1829enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.174104info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.89.174104info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1408.5081info:eu-repo/semantics/altIdentifier/issn/0163-1829info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:02:19Zoai:ri.conicet.gov.ar:11336/4416instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:02:19.814CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films
title Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films
spellingShingle Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films
Belletti, Gustavo Daniel
Thin Films
Ferroelctricity
Atomistic
Classical Force Field
title_short Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films
title_full Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films
title_fullStr Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films
title_full_unstemmed Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films
title_sort Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films
dc.creator.none.fl_str_mv Belletti, Gustavo Daniel
Dalosto, Sergio Daniel
Tinte, Silvia Noemi
author Belletti, Gustavo Daniel
author_facet Belletti, Gustavo Daniel
Dalosto, Sergio Daniel
Tinte, Silvia Noemi
author_role author
author2 Dalosto, Sergio Daniel
Tinte, Silvia Noemi
author2_role author
author
dc.subject.none.fl_str_mv Thin Films
Ferroelctricity
Atomistic
Classical Force Field
topic Thin Films
Ferroelctricity
Atomistic
Classical Force Field
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We report first-principle atomistic simulations of the effect of local strain gradients on the nanoscale domain morphology of free-standing PbTiO3 ultrathin films. First, the ferroelectric properties of free films at the atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells), we find flux-closure domain structures whose morphology is thickness dependent. A critical value of 20 unit cells is observed: thinner films show structures with 90º domain loops, whereas thicker ones develop, in addition, 180º domain walls, giving rise to structures of the Landau-Lifshitz type. When a local and compressive strain gradient at the top surface is imposed, the gradient is able to switch the polarization of the downward domains, but not to the opposite ones. The evolution of the domain pattern as a function of the strain gradient strength consequently depends on the film thickness. Our simulations indicate that in thinner films, first the 90º domain loops migrate towards the strain-gradient region, and then the polarization in that zone is gradually switched. In thicker films, instead, the switching in the strain-gradient region is progressive, not involving domain-wall motion, which is attributed to less mobile 180º domain walls. The ferroelectric switching is understood based on the knowledge of the local atomic properties, and the results confirm that mechanical flexoelectricity provides a means to control the nanodomain pattern in ferroelectric systems.
Fil: Belletti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Tinte, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
description We report first-principle atomistic simulations of the effect of local strain gradients on the nanoscale domain morphology of free-standing PbTiO3 ultrathin films. First, the ferroelectric properties of free films at the atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells), we find flux-closure domain structures whose morphology is thickness dependent. A critical value of 20 unit cells is observed: thinner films show structures with 90º domain loops, whereas thicker ones develop, in addition, 180º domain walls, giving rise to structures of the Landau-Lifshitz type. When a local and compressive strain gradient at the top surface is imposed, the gradient is able to switch the polarization of the downward domains, but not to the opposite ones. The evolution of the domain pattern as a function of the strain gradient strength consequently depends on the film thickness. Our simulations indicate that in thinner films, first the 90º domain loops migrate towards the strain-gradient region, and then the polarization in that zone is gradually switched. In thicker films, instead, the switching in the strain-gradient region is progressive, not involving domain-wall motion, which is attributed to less mobile 180º domain walls. The ferroelectric switching is understood based on the knowledge of the local atomic properties, and the results confirm that mechanical flexoelectricity provides a means to control the nanodomain pattern in ferroelectric systems.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4416
Belletti, Gustavo Daniel; Dalosto, Sergio Daniel; Tinte, Silvia Noemi; Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films; American Physical Society; Physical Review B; 89; 17; 4-2014; 174104-174104
0163-1829
url http://hdl.handle.net/11336/4416
identifier_str_mv Belletti, Gustavo Daniel; Dalosto, Sergio Daniel; Tinte, Silvia Noemi; Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films; American Physical Society; Physical Review B; 89; 17; 4-2014; 174104-174104
0163-1829
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.174104
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.89.174104
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1408.5081
info:eu-repo/semantics/altIdentifier/issn/0163-1829
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847426785291010048
score 13.10058