Continuum of metastable conical states of monoaxial chiral helimagnets
- Autores
- Laliena, Victor; Osorio, Santiago Antonio; Bazo, Diego; Bustingorry, Sebastián; Campo, Javier
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- At low temperature and zero applied magnetic field, besides the equilibrium helical state, monoaxial chiral helimagnets have a continuum of helical states differing by the wave number of the modulation. The wave number of these states in units of the equilibrium state wave number is denoted here by p, and accordingly the corresponding states are called the p states. In this work we study in detail the metastability of the p states. The application of an external magnetic field in the direction of the chiral axis has a double effect: On the one hand, it introduces a conical deformation of the p states, and, on the other hand, it destabilizes some of them, shrinking the range of p in which the p states are metastable. If a polarized current is applied along the chiral axis, then the p states reach a steady moving state with a constant velocity proportional to the current intensity. Besides this dynamical effect, the polarized current also induces a conical deformation and reduces the range of stability of the p states. The stability diagram in the plane applied field–applied current intensity has interesting features that, among other things, permits the manipulation of p states by a combination of applied fields and currents. These features can be exploited to devise processes to switch between p states. In particular there are p states with negative p, opening the possibility to helicity switching. The theoretical feasibility of such processes, crucial from the point of view of applications, is shown by micromagnetic simulations. Analogous p states exists in cubic chiral helimagnets and therefore similar effects are expected in those systems.
Fil: Laliena, Victor. Universidad de Zaragoza; España
Fil: Osorio, Santiago Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Bazo, Diego. Universidad de Zaragoza; España
Fil: Bustingorry, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Campo, Javier. Universidad de Zaragoza; España - Materia
-
chiral helimagnets
domain wall
magnetization dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/232824
Ver los metadatos del registro completo
id |
CONICETDig_5d9f496a8efafc46a10dc272917235b4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/232824 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Continuum of metastable conical states of monoaxial chiral helimagnetsLaliena, VictorOsorio, Santiago AntonioBazo, DiegoBustingorry, SebastiánCampo, Javierchiral helimagnetsdomain wallmagnetization dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1At low temperature and zero applied magnetic field, besides the equilibrium helical state, monoaxial chiral helimagnets have a continuum of helical states differing by the wave number of the modulation. The wave number of these states in units of the equilibrium state wave number is denoted here by p, and accordingly the corresponding states are called the p states. In this work we study in detail the metastability of the p states. The application of an external magnetic field in the direction of the chiral axis has a double effect: On the one hand, it introduces a conical deformation of the p states, and, on the other hand, it destabilizes some of them, shrinking the range of p in which the p states are metastable. If a polarized current is applied along the chiral axis, then the p states reach a steady moving state with a constant velocity proportional to the current intensity. Besides this dynamical effect, the polarized current also induces a conical deformation and reduces the range of stability of the p states. The stability diagram in the plane applied field–applied current intensity has interesting features that, among other things, permits the manipulation of p states by a combination of applied fields and currents. These features can be exploited to devise processes to switch between p states. In particular there are p states with negative p, opening the possibility to helicity switching. The theoretical feasibility of such processes, crucial from the point of view of applications, is shown by micromagnetic simulations. Analogous p states exists in cubic chiral helimagnets and therefore similar effects are expected in those systems.Fil: Laliena, Victor. Universidad de Zaragoza; EspañaFil: Osorio, Santiago Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Bazo, Diego. Universidad de Zaragoza; EspañaFil: Bustingorry, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Campo, Javier. Universidad de Zaragoza; EspañaAmerican Physical Society2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232824Laliena, Victor; Osorio, Santiago Antonio; Bazo, Diego; Bustingorry, Sebastián; Campo, Javier; Continuum of metastable conical states of monoaxial chiral helimagnets; American Physical Society; Physical Review B; 108; 2; 7-2023; 24425-244372469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1103/PhysRevB.108.024425info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.108.024425info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:37Zoai:ri.conicet.gov.ar:11336/232824instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:37.268CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Continuum of metastable conical states of monoaxial chiral helimagnets |
title |
Continuum of metastable conical states of monoaxial chiral helimagnets |
spellingShingle |
Continuum of metastable conical states of monoaxial chiral helimagnets Laliena, Victor chiral helimagnets domain wall magnetization dynamics |
title_short |
Continuum of metastable conical states of monoaxial chiral helimagnets |
title_full |
Continuum of metastable conical states of monoaxial chiral helimagnets |
title_fullStr |
Continuum of metastable conical states of monoaxial chiral helimagnets |
title_full_unstemmed |
Continuum of metastable conical states of monoaxial chiral helimagnets |
title_sort |
Continuum of metastable conical states of monoaxial chiral helimagnets |
dc.creator.none.fl_str_mv |
Laliena, Victor Osorio, Santiago Antonio Bazo, Diego Bustingorry, Sebastián Campo, Javier |
author |
Laliena, Victor |
author_facet |
Laliena, Victor Osorio, Santiago Antonio Bazo, Diego Bustingorry, Sebastián Campo, Javier |
author_role |
author |
author2 |
Osorio, Santiago Antonio Bazo, Diego Bustingorry, Sebastián Campo, Javier |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
chiral helimagnets domain wall magnetization dynamics |
topic |
chiral helimagnets domain wall magnetization dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
At low temperature and zero applied magnetic field, besides the equilibrium helical state, monoaxial chiral helimagnets have a continuum of helical states differing by the wave number of the modulation. The wave number of these states in units of the equilibrium state wave number is denoted here by p, and accordingly the corresponding states are called the p states. In this work we study in detail the metastability of the p states. The application of an external magnetic field in the direction of the chiral axis has a double effect: On the one hand, it introduces a conical deformation of the p states, and, on the other hand, it destabilizes some of them, shrinking the range of p in which the p states are metastable. If a polarized current is applied along the chiral axis, then the p states reach a steady moving state with a constant velocity proportional to the current intensity. Besides this dynamical effect, the polarized current also induces a conical deformation and reduces the range of stability of the p states. The stability diagram in the plane applied field–applied current intensity has interesting features that, among other things, permits the manipulation of p states by a combination of applied fields and currents. These features can be exploited to devise processes to switch between p states. In particular there are p states with negative p, opening the possibility to helicity switching. The theoretical feasibility of such processes, crucial from the point of view of applications, is shown by micromagnetic simulations. Analogous p states exists in cubic chiral helimagnets and therefore similar effects are expected in those systems. Fil: Laliena, Victor. Universidad de Zaragoza; España Fil: Osorio, Santiago Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Bazo, Diego. Universidad de Zaragoza; España Fil: Bustingorry, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Campo, Javier. Universidad de Zaragoza; España |
description |
At low temperature and zero applied magnetic field, besides the equilibrium helical state, monoaxial chiral helimagnets have a continuum of helical states differing by the wave number of the modulation. The wave number of these states in units of the equilibrium state wave number is denoted here by p, and accordingly the corresponding states are called the p states. In this work we study in detail the metastability of the p states. The application of an external magnetic field in the direction of the chiral axis has a double effect: On the one hand, it introduces a conical deformation of the p states, and, on the other hand, it destabilizes some of them, shrinking the range of p in which the p states are metastable. If a polarized current is applied along the chiral axis, then the p states reach a steady moving state with a constant velocity proportional to the current intensity. Besides this dynamical effect, the polarized current also induces a conical deformation and reduces the range of stability of the p states. The stability diagram in the plane applied field–applied current intensity has interesting features that, among other things, permits the manipulation of p states by a combination of applied fields and currents. These features can be exploited to devise processes to switch between p states. In particular there are p states with negative p, opening the possibility to helicity switching. The theoretical feasibility of such processes, crucial from the point of view of applications, is shown by micromagnetic simulations. Analogous p states exists in cubic chiral helimagnets and therefore similar effects are expected in those systems. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/232824 Laliena, Victor; Osorio, Santiago Antonio; Bazo, Diego; Bustingorry, Sebastián; Campo, Javier; Continuum of metastable conical states of monoaxial chiral helimagnets; American Physical Society; Physical Review B; 108; 2; 7-2023; 24425-24437 2469-9969 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/232824 |
identifier_str_mv |
Laliena, Victor; Osorio, Santiago Antonio; Bazo, Diego; Bustingorry, Sebastián; Campo, Javier; Continuum of metastable conical states of monoaxial chiral helimagnets; American Physical Society; Physical Review B; 108; 2; 7-2023; 24425-24437 2469-9969 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1103/PhysRevB.108.024425 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.108.024425 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614149674369024 |
score |
13.070432 |