Generation of turbulence through frontogenesis in sheared stratified flows
- Autores
- Sujovolsky, Nicolás Eduardo; Mininni, Pablo Daniel; Pouquet, A.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit must be found to channel the energy to the small scales where it can be dissipated. In turbulence, this takes the form of an energy cascade, whereas a possible mechanism in a balanced flow is through the formation of fronts, a common occurrence in geophysics. We show that an iconic configuration in laboratory and numerical experiments for the study of turbulence, the so-called Taylor-Green or von Kármán swirling flow, can be suitably adapted to domains with large aspect ratios, leading to the creation of an imposed large-scale vertical shear. To this effect, we use direct numerical simulations of the Boussinesq equations without net rotation and with no small-scale modeling. Various grid spacings are used, up to 20482 × 256 spatial points. The grids are always isotropic, with box aspect ratios of either 1:4 or 1:8. We find that when shear and stratification are comparable, the imposed shear layer resulting from the forcing leads to the formation of fronts and filaments which destabilize and evolve into a turbulent flow in the bulk, with a sizable amount of dissipation and mixing, following a cycle of front creation, instability, and development of turbulence. The results depend on the vertical length scales of shear and stratification.
Fil: Sujovolsky, Nicolás Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Pouquet, A.. State University of Colorado at Boulder; Estados Unidos. National Center for Atmospheric Research; Estados Unidos - Materia
-
ATMOSPHERIC FLOWS
OCEANIC FLOWS
FRONTOGENESIS
TURBULENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/208128
Ver los metadatos del registro completo
| id |
CONICETDig_5d521d6d27a08d3e7441052cb539b7aa |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/208128 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Generation of turbulence through frontogenesis in sheared stratified flowsSujovolsky, Nicolás EduardoMininni, Pablo DanielPouquet, A.ATMOSPHERIC FLOWSOCEANIC FLOWSFRONTOGENESISTURBULENCEhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit must be found to channel the energy to the small scales where it can be dissipated. In turbulence, this takes the form of an energy cascade, whereas a possible mechanism in a balanced flow is through the formation of fronts, a common occurrence in geophysics. We show that an iconic configuration in laboratory and numerical experiments for the study of turbulence, the so-called Taylor-Green or von Kármán swirling flow, can be suitably adapted to domains with large aspect ratios, leading to the creation of an imposed large-scale vertical shear. To this effect, we use direct numerical simulations of the Boussinesq equations without net rotation and with no small-scale modeling. Various grid spacings are used, up to 20482 × 256 spatial points. The grids are always isotropic, with box aspect ratios of either 1:4 or 1:8. We find that when shear and stratification are comparable, the imposed shear layer resulting from the forcing leads to the formation of fronts and filaments which destabilize and evolve into a turbulent flow in the bulk, with a sizable amount of dissipation and mixing, following a cycle of front creation, instability, and development of turbulence. The results depend on the vertical length scales of shear and stratification.Fil: Sujovolsky, Nicolás Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Pouquet, A.. State University of Colorado at Boulder; Estados Unidos. National Center for Atmospheric Research; Estados UnidosAmerican Institute of Physics2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/208128Sujovolsky, Nicolás Eduardo; Mininni, Pablo Daniel; Pouquet, A.; Generation of turbulence through frontogenesis in sheared stratified flows; American Institute of Physics; Physics of Fluids; 30; 8; 8-2018; 1-201070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/https://aip.scitation.org/doi/10.1063/1.5043293info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:54:00Zoai:ri.conicet.gov.ar:11336/208128instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:54:00.549CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Generation of turbulence through frontogenesis in sheared stratified flows |
| title |
Generation of turbulence through frontogenesis in sheared stratified flows |
| spellingShingle |
Generation of turbulence through frontogenesis in sheared stratified flows Sujovolsky, Nicolás Eduardo ATMOSPHERIC FLOWS OCEANIC FLOWS FRONTOGENESIS TURBULENCE |
| title_short |
Generation of turbulence through frontogenesis in sheared stratified flows |
| title_full |
Generation of turbulence through frontogenesis in sheared stratified flows |
| title_fullStr |
Generation of turbulence through frontogenesis in sheared stratified flows |
| title_full_unstemmed |
Generation of turbulence through frontogenesis in sheared stratified flows |
| title_sort |
Generation of turbulence through frontogenesis in sheared stratified flows |
| dc.creator.none.fl_str_mv |
Sujovolsky, Nicolás Eduardo Mininni, Pablo Daniel Pouquet, A. |
| author |
Sujovolsky, Nicolás Eduardo |
| author_facet |
Sujovolsky, Nicolás Eduardo Mininni, Pablo Daniel Pouquet, A. |
| author_role |
author |
| author2 |
Mininni, Pablo Daniel Pouquet, A. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
ATMOSPHERIC FLOWS OCEANIC FLOWS FRONTOGENESIS TURBULENCE |
| topic |
ATMOSPHERIC FLOWS OCEANIC FLOWS FRONTOGENESIS TURBULENCE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit must be found to channel the energy to the small scales where it can be dissipated. In turbulence, this takes the form of an energy cascade, whereas a possible mechanism in a balanced flow is through the formation of fronts, a common occurrence in geophysics. We show that an iconic configuration in laboratory and numerical experiments for the study of turbulence, the so-called Taylor-Green or von Kármán swirling flow, can be suitably adapted to domains with large aspect ratios, leading to the creation of an imposed large-scale vertical shear. To this effect, we use direct numerical simulations of the Boussinesq equations without net rotation and with no small-scale modeling. Various grid spacings are used, up to 20482 × 256 spatial points. The grids are always isotropic, with box aspect ratios of either 1:4 or 1:8. We find that when shear and stratification are comparable, the imposed shear layer resulting from the forcing leads to the formation of fronts and filaments which destabilize and evolve into a turbulent flow in the bulk, with a sizable amount of dissipation and mixing, following a cycle of front creation, instability, and development of turbulence. The results depend on the vertical length scales of shear and stratification. Fil: Sujovolsky, Nicolás Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Pouquet, A.. State University of Colorado at Boulder; Estados Unidos. National Center for Atmospheric Research; Estados Unidos |
| description |
The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit must be found to channel the energy to the small scales where it can be dissipated. In turbulence, this takes the form of an energy cascade, whereas a possible mechanism in a balanced flow is through the formation of fronts, a common occurrence in geophysics. We show that an iconic configuration in laboratory and numerical experiments for the study of turbulence, the so-called Taylor-Green or von Kármán swirling flow, can be suitably adapted to domains with large aspect ratios, leading to the creation of an imposed large-scale vertical shear. To this effect, we use direct numerical simulations of the Boussinesq equations without net rotation and with no small-scale modeling. Various grid spacings are used, up to 20482 × 256 spatial points. The grids are always isotropic, with box aspect ratios of either 1:4 or 1:8. We find that when shear and stratification are comparable, the imposed shear layer resulting from the forcing leads to the formation of fronts and filaments which destabilize and evolve into a turbulent flow in the bulk, with a sizable amount of dissipation and mixing, following a cycle of front creation, instability, and development of turbulence. The results depend on the vertical length scales of shear and stratification. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/208128 Sujovolsky, Nicolás Eduardo; Mininni, Pablo Daniel; Pouquet, A.; Generation of turbulence through frontogenesis in sheared stratified flows; American Institute of Physics; Physics of Fluids; 30; 8; 8-2018; 1-20 1070-6631 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/208128 |
| identifier_str_mv |
Sujovolsky, Nicolás Eduardo; Mininni, Pablo Daniel; Pouquet, A.; Generation of turbulence through frontogenesis in sheared stratified flows; American Institute of Physics; Physics of Fluids; 30; 8; 8-2018; 1-20 1070-6631 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/https://aip.scitation.org/doi/10.1063/1.5043293 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Institute of Physics |
| publisher.none.fl_str_mv |
American Institute of Physics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847978265970475008 |
| score |
13.087074 |