A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic Biomonitoring
- Autores
- Chaparro, Mauro Alejandro Eduardo; Chaparro, Marcos Adrián Eduardo; Molinari, Daniela Alejandra
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Airborne magnetic particles may be harmful because of their composition, morphology, and association with potentially toxic elements that may be observed through relationships between magnetic parameters and pollution indices, such as the Tomlinson pollution load index (PLI). We present a fuzzy-based analysis of magnetic biomonitoring data from four Latin American cities, which allows us to construct a magnetic index of contamination (IMC). This IMC uses four magnetic parameters, i.e., magnetic susceptibility χ, saturation isothermal remanent magnetization SIRM, coercivity of remanence Hcr, and SIRM/χ, and proposes summarizing the information to assess an area based exclusively on magnetic parameters more easily. The fuzzy inference system membership functions are built from the standardization of the data to become independent of the values. The proposed IMC is calculated using the baseline values for each case study, similar to the PLI. The highest IMC values were obtained in sites close to industrial areas, and in contrast, the lowest ones were observed in residential areas far from avenues or highways. The linear regression model between modeled IMC and PLI data yielded robust correlations of R2 > 0.85. The IMC is proposed as a complementary tool for air particle pollution and is a cost-effective magnetic approach for monitoring areas
Fil: Chaparro, Mauro Alejandro Eduardo. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Chaparro, Marcos Adrián Eduardo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Fil: Molinari, Daniela Alejandra. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
FUZZY MODEL
FUZZY NUMBER
MAGNETIC BIOMONITORING
AIRBORNE MAGNETIC PARTICLE
STATISTICS
PLI INDEX - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/240416
Ver los metadatos del registro completo
id |
CONICETDig_5c5f9f62c0401f102fcaa7875ce4f5bf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/240416 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic BiomonitoringChaparro, Mauro Alejandro EduardoChaparro, Marcos Adrián EduardoMolinari, Daniela AlejandraFUZZY MODELFUZZY NUMBERMAGNETIC BIOMONITORINGAIRBORNE MAGNETIC PARTICLESTATISTICSPLI INDEXhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Airborne magnetic particles may be harmful because of their composition, morphology, and association with potentially toxic elements that may be observed through relationships between magnetic parameters and pollution indices, such as the Tomlinson pollution load index (PLI). We present a fuzzy-based analysis of magnetic biomonitoring data from four Latin American cities, which allows us to construct a magnetic index of contamination (IMC). This IMC uses four magnetic parameters, i.e., magnetic susceptibility χ, saturation isothermal remanent magnetization SIRM, coercivity of remanence Hcr, and SIRM/χ, and proposes summarizing the information to assess an area based exclusively on magnetic parameters more easily. The fuzzy inference system membership functions are built from the standardization of the data to become independent of the values. The proposed IMC is calculated using the baseline values for each case study, similar to the PLI. The highest IMC values were obtained in sites close to industrial areas, and in contrast, the lowest ones were observed in residential areas far from avenues or highways. The linear regression model between modeled IMC and PLI data yielded robust correlations of R2 > 0.85. The IMC is proposed as a complementary tool for air particle pollution and is a cost-effective magnetic approach for monitoring areasFil: Chaparro, Mauro Alejandro Eduardo. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chaparro, Marcos Adrián Eduardo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Molinari, Daniela Alejandra. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMDPI2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/240416Chaparro, Mauro Alejandro Eduardo; Chaparro, Marcos Adrián Eduardo; Molinari, Daniela Alejandra; A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic Biomonitoring; MDPI; Atmosphere; 15; 4; 3-2024; 1-162073-4433CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4433/15/4/435info:eu-repo/semantics/altIdentifier/doi/10.3390/atmos15040435info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:06Zoai:ri.conicet.gov.ar:11336/240416instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:07.3CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic Biomonitoring |
title |
A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic Biomonitoring |
spellingShingle |
A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic Biomonitoring Chaparro, Mauro Alejandro Eduardo FUZZY MODEL FUZZY NUMBER MAGNETIC BIOMONITORING AIRBORNE MAGNETIC PARTICLE STATISTICS PLI INDEX |
title_short |
A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic Biomonitoring |
title_full |
A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic Biomonitoring |
title_fullStr |
A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic Biomonitoring |
title_full_unstemmed |
A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic Biomonitoring |
title_sort |
A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic Biomonitoring |
dc.creator.none.fl_str_mv |
Chaparro, Mauro Alejandro Eduardo Chaparro, Marcos Adrián Eduardo Molinari, Daniela Alejandra |
author |
Chaparro, Mauro Alejandro Eduardo |
author_facet |
Chaparro, Mauro Alejandro Eduardo Chaparro, Marcos Adrián Eduardo Molinari, Daniela Alejandra |
author_role |
author |
author2 |
Chaparro, Marcos Adrián Eduardo Molinari, Daniela Alejandra |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FUZZY MODEL FUZZY NUMBER MAGNETIC BIOMONITORING AIRBORNE MAGNETIC PARTICLE STATISTICS PLI INDEX |
topic |
FUZZY MODEL FUZZY NUMBER MAGNETIC BIOMONITORING AIRBORNE MAGNETIC PARTICLE STATISTICS PLI INDEX |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Airborne magnetic particles may be harmful because of their composition, morphology, and association with potentially toxic elements that may be observed through relationships between magnetic parameters and pollution indices, such as the Tomlinson pollution load index (PLI). We present a fuzzy-based analysis of magnetic biomonitoring data from four Latin American cities, which allows us to construct a magnetic index of contamination (IMC). This IMC uses four magnetic parameters, i.e., magnetic susceptibility χ, saturation isothermal remanent magnetization SIRM, coercivity of remanence Hcr, and SIRM/χ, and proposes summarizing the information to assess an area based exclusively on magnetic parameters more easily. The fuzzy inference system membership functions are built from the standardization of the data to become independent of the values. The proposed IMC is calculated using the baseline values for each case study, similar to the PLI. The highest IMC values were obtained in sites close to industrial areas, and in contrast, the lowest ones were observed in residential areas far from avenues or highways. The linear regression model between modeled IMC and PLI data yielded robust correlations of R2 > 0.85. The IMC is proposed as a complementary tool for air particle pollution and is a cost-effective magnetic approach for monitoring areas Fil: Chaparro, Mauro Alejandro Eduardo. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Chaparro, Marcos Adrián Eduardo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina Fil: Molinari, Daniela Alejandra. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Airborne magnetic particles may be harmful because of their composition, morphology, and association with potentially toxic elements that may be observed through relationships between magnetic parameters and pollution indices, such as the Tomlinson pollution load index (PLI). We present a fuzzy-based analysis of magnetic biomonitoring data from four Latin American cities, which allows us to construct a magnetic index of contamination (IMC). This IMC uses four magnetic parameters, i.e., magnetic susceptibility χ, saturation isothermal remanent magnetization SIRM, coercivity of remanence Hcr, and SIRM/χ, and proposes summarizing the information to assess an area based exclusively on magnetic parameters more easily. The fuzzy inference system membership functions are built from the standardization of the data to become independent of the values. The proposed IMC is calculated using the baseline values for each case study, similar to the PLI. The highest IMC values were obtained in sites close to industrial areas, and in contrast, the lowest ones were observed in residential areas far from avenues or highways. The linear regression model between modeled IMC and PLI data yielded robust correlations of R2 > 0.85. The IMC is proposed as a complementary tool for air particle pollution and is a cost-effective magnetic approach for monitoring areas |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/240416 Chaparro, Mauro Alejandro Eduardo; Chaparro, Marcos Adrián Eduardo; Molinari, Daniela Alejandra; A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic Biomonitoring; MDPI; Atmosphere; 15; 4; 3-2024; 1-16 2073-4433 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/240416 |
identifier_str_mv |
Chaparro, Mauro Alejandro Eduardo; Chaparro, Marcos Adrián Eduardo; Molinari, Daniela Alejandra; A Fuzzy-Based Analysis of Air Particle Pollution Data: An Index IMC for Magnetic Biomonitoring; MDPI; Atmosphere; 15; 4; 3-2024; 1-16 2073-4433 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4433/15/4/435 info:eu-repo/semantics/altIdentifier/doi/10.3390/atmos15040435 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269783063527424 |
score |
13.13397 |