Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit
- Autores
- Allub, Roberto Jose; Proetto, Cesar Ramon
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The case of a quantum dot connected to two superconducting leads is studied by using the narrow-band limit to describe the superconducting degrees of freedom. The model provides a simple theoretical framework, almost analytical, to analyze the interplay between the Kondo effect, superconductivity, and finite temperature. In the quantum dot Kondo regime, the model is completely characterized by the ratio /J , with the superconducting gap and J an effective antiferromagnetic exchange coupling between the dot and the leads. The model allows us to calculate, at any temperature T , the equilibrium Josephson current through the dot in a very straightforward way as a function of /J . The behavior of the current allows us to distinguish the four types of hybrid junctions: 0, 0 , π , and π. The presence of the 0- and 0 -junction configurations are intrinsically linked to the Kondo effect in the quantum dot, while the π- and π -junction configurations are driven by the superconductivity in the leads. The Josephson critical current has a non-monotonic behavior with temperature, that may be used for the experimental characterization of the fundamental 0 − π transition. The model allows us to obtain easily a phase diagram /J vs temperature, from where we can obtain an overall picture on the stability of the different types of junctions. From the explicit analytical expressions for the ground-state, low-energy excitations, free energy, and Josephson current, it is easy to understand the physical nature of the main features of the critical current and the phase diagram. The results, obtained with a minimum of numerical effort, are in a good qualitative agreement with more demanding calculational approaches aimed to solve the full model.
Fil: Allub, Roberto Jose. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Proetto, Cesar Ramon. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina - Materia
-
Superconductivity
Kondo Effect
Josephason Current - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53733
Ver los metadatos del registro completo
id |
CONICETDig_5c397918188a1765b8e39cc3f8266d08 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53733 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limitAllub, Roberto JoseProetto, Cesar RamonSuperconductivityKondo EffectJosephason Currenthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The case of a quantum dot connected to two superconducting leads is studied by using the narrow-band limit to describe the superconducting degrees of freedom. The model provides a simple theoretical framework, almost analytical, to analyze the interplay between the Kondo effect, superconductivity, and finite temperature. In the quantum dot Kondo regime, the model is completely characterized by the ratio /J , with the superconducting gap and J an effective antiferromagnetic exchange coupling between the dot and the leads. The model allows us to calculate, at any temperature T , the equilibrium Josephson current through the dot in a very straightforward way as a function of /J . The behavior of the current allows us to distinguish the four types of hybrid junctions: 0, 0 , π , and π. The presence of the 0- and 0 -junction configurations are intrinsically linked to the Kondo effect in the quantum dot, while the π- and π -junction configurations are driven by the superconductivity in the leads. The Josephson critical current has a non-monotonic behavior with temperature, that may be used for the experimental characterization of the fundamental 0 − π transition. The model allows us to obtain easily a phase diagram /J vs temperature, from where we can obtain an overall picture on the stability of the different types of junctions. From the explicit analytical expressions for the ground-state, low-energy excitations, free energy, and Josephson current, it is easy to understand the physical nature of the main features of the critical current and the phase diagram. The results, obtained with a minimum of numerical effort, are in a good qualitative agreement with more demanding calculational approaches aimed to solve the full model.Fil: Allub, Roberto Jose. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Proetto, Cesar Ramon. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaAmerican Physical Society2015-01-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53733Allub, Roberto Jose; Proetto, Cesar Ramon; Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 91; 4; 30-1-2015; 4544201-45442111098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/ 10.1103/PhysRevB.91.045442info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.91.045442info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:40Zoai:ri.conicet.gov.ar:11336/53733instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:41.1CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit |
title |
Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit |
spellingShingle |
Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit Allub, Roberto Jose Superconductivity Kondo Effect Josephason Current |
title_short |
Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit |
title_full |
Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit |
title_fullStr |
Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit |
title_full_unstemmed |
Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit |
title_sort |
Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit |
dc.creator.none.fl_str_mv |
Allub, Roberto Jose Proetto, Cesar Ramon |
author |
Allub, Roberto Jose |
author_facet |
Allub, Roberto Jose Proetto, Cesar Ramon |
author_role |
author |
author2 |
Proetto, Cesar Ramon |
author2_role |
author |
dc.subject.none.fl_str_mv |
Superconductivity Kondo Effect Josephason Current |
topic |
Superconductivity Kondo Effect Josephason Current |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The case of a quantum dot connected to two superconducting leads is studied by using the narrow-band limit to describe the superconducting degrees of freedom. The model provides a simple theoretical framework, almost analytical, to analyze the interplay between the Kondo effect, superconductivity, and finite temperature. In the quantum dot Kondo regime, the model is completely characterized by the ratio /J , with the superconducting gap and J an effective antiferromagnetic exchange coupling between the dot and the leads. The model allows us to calculate, at any temperature T , the equilibrium Josephson current through the dot in a very straightforward way as a function of /J . The behavior of the current allows us to distinguish the four types of hybrid junctions: 0, 0 , π , and π. The presence of the 0- and 0 -junction configurations are intrinsically linked to the Kondo effect in the quantum dot, while the π- and π -junction configurations are driven by the superconductivity in the leads. The Josephson critical current has a non-monotonic behavior with temperature, that may be used for the experimental characterization of the fundamental 0 − π transition. The model allows us to obtain easily a phase diagram /J vs temperature, from where we can obtain an overall picture on the stability of the different types of junctions. From the explicit analytical expressions for the ground-state, low-energy excitations, free energy, and Josephson current, it is easy to understand the physical nature of the main features of the critical current and the phase diagram. The results, obtained with a minimum of numerical effort, are in a good qualitative agreement with more demanding calculational approaches aimed to solve the full model. Fil: Allub, Roberto Jose. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Proetto, Cesar Ramon. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina |
description |
The case of a quantum dot connected to two superconducting leads is studied by using the narrow-band limit to describe the superconducting degrees of freedom. The model provides a simple theoretical framework, almost analytical, to analyze the interplay between the Kondo effect, superconductivity, and finite temperature. In the quantum dot Kondo regime, the model is completely characterized by the ratio /J , with the superconducting gap and J an effective antiferromagnetic exchange coupling between the dot and the leads. The model allows us to calculate, at any temperature T , the equilibrium Josephson current through the dot in a very straightforward way as a function of /J . The behavior of the current allows us to distinguish the four types of hybrid junctions: 0, 0 , π , and π. The presence of the 0- and 0 -junction configurations are intrinsically linked to the Kondo effect in the quantum dot, while the π- and π -junction configurations are driven by the superconductivity in the leads. The Josephson critical current has a non-monotonic behavior with temperature, that may be used for the experimental characterization of the fundamental 0 − π transition. The model allows us to obtain easily a phase diagram /J vs temperature, from where we can obtain an overall picture on the stability of the different types of junctions. From the explicit analytical expressions for the ground-state, low-energy excitations, free energy, and Josephson current, it is easy to understand the physical nature of the main features of the critical current and the phase diagram. The results, obtained with a minimum of numerical effort, are in a good qualitative agreement with more demanding calculational approaches aimed to solve the full model. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53733 Allub, Roberto Jose; Proetto, Cesar Ramon; Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 91; 4; 30-1-2015; 4544201-4544211 1098-0121 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/53733 |
identifier_str_mv |
Allub, Roberto Jose; Proetto, Cesar Ramon; Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 91; 4; 30-1-2015; 4544201-4544211 1098-0121 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ 10.1103/PhysRevB.91.045442 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.91.045442 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269417730211840 |
score |
12.885934 |