Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit

Autores
Allub, Roberto Jose; Proetto, Cesar Ramon
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The case of a quantum dot connected to two superconducting leads is studied by using the narrow-band limit to describe the superconducting degrees of freedom. The model provides a simple theoretical framework, almost analytical, to analyze the interplay between the Kondo effect, superconductivity, and finite temperature. In the quantum dot Kondo regime, the model is completely characterized by the ratio /J , with the superconducting gap and J an effective antiferromagnetic exchange coupling between the dot and the leads. The model allows us to calculate, at any temperature T , the equilibrium Josephson current through the dot in a very straightforward way as a function of /J . The behavior of the current allows us to distinguish the four types of hybrid junctions: 0, 0 , π , and π. The presence of the 0- and 0 -junction configurations are intrinsically linked to the Kondo effect in the quantum dot, while the π- and π -junction configurations are driven by the superconductivity in the leads. The Josephson critical current has a non-monotonic behavior with temperature, that may be used for the experimental characterization of the fundamental 0 − π transition. The model allows us to obtain easily a phase diagram /J vs temperature, from where we can obtain an overall picture on the stability of the different types of junctions. From the explicit analytical expressions for the ground-state, low-energy excitations, free energy, and Josephson current, it is easy to understand the physical nature of the main features of the critical current and the phase diagram. The results, obtained with a minimum of numerical effort, are in a good qualitative agreement with more demanding calculational approaches aimed to solve the full model.
Fil: Allub, Roberto Jose. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Proetto, Cesar Ramon. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
Superconductivity
Kondo Effect
Josephason Current
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53733

id CONICETDig_5c397918188a1765b8e39cc3f8266d08
oai_identifier_str oai:ri.conicet.gov.ar:11336/53733
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limitAllub, Roberto JoseProetto, Cesar RamonSuperconductivityKondo EffectJosephason Currenthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The case of a quantum dot connected to two superconducting leads is studied by using the narrow-band limit to describe the superconducting degrees of freedom. The model provides a simple theoretical framework, almost analytical, to analyze the interplay between the Kondo effect, superconductivity, and finite temperature. In the quantum dot Kondo regime, the model is completely characterized by the ratio /J , with the superconducting gap and J an effective antiferromagnetic exchange coupling between the dot and the leads. The model allows us to calculate, at any temperature T , the equilibrium Josephson current through the dot in a very straightforward way as a function of /J . The behavior of the current allows us to distinguish the four types of hybrid junctions: 0, 0 , π , and π. The presence of the 0- and 0 -junction configurations are intrinsically linked to the Kondo effect in the quantum dot, while the π- and π -junction configurations are driven by the superconductivity in the leads. The Josephson critical current has a non-monotonic behavior with temperature, that may be used for the experimental characterization of the fundamental 0 − π transition. The model allows us to obtain easily a phase diagram /J vs temperature, from where we can obtain an overall picture on the stability of the different types of junctions. From the explicit analytical expressions for the ground-state, low-energy excitations, free energy, and Josephson current, it is easy to understand the physical nature of the main features of the critical current and the phase diagram. The results, obtained with a minimum of numerical effort, are in a good qualitative agreement with more demanding calculational approaches aimed to solve the full model.Fil: Allub, Roberto Jose. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Proetto, Cesar Ramon. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaAmerican Physical Society2015-01-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53733Allub, Roberto Jose; Proetto, Cesar Ramon; Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 91; 4; 30-1-2015; 4544201-45442111098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/ 10.1103/PhysRevB.91.045442info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.91.045442info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:40Zoai:ri.conicet.gov.ar:11336/53733instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:41.1CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit
title Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit
spellingShingle Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit
Allub, Roberto Jose
Superconductivity
Kondo Effect
Josephason Current
title_short Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit
title_full Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit
title_fullStr Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit
title_full_unstemmed Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit
title_sort Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit
dc.creator.none.fl_str_mv Allub, Roberto Jose
Proetto, Cesar Ramon
author Allub, Roberto Jose
author_facet Allub, Roberto Jose
Proetto, Cesar Ramon
author_role author
author2 Proetto, Cesar Ramon
author2_role author
dc.subject.none.fl_str_mv Superconductivity
Kondo Effect
Josephason Current
topic Superconductivity
Kondo Effect
Josephason Current
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The case of a quantum dot connected to two superconducting leads is studied by using the narrow-band limit to describe the superconducting degrees of freedom. The model provides a simple theoretical framework, almost analytical, to analyze the interplay between the Kondo effect, superconductivity, and finite temperature. In the quantum dot Kondo regime, the model is completely characterized by the ratio /J , with the superconducting gap and J an effective antiferromagnetic exchange coupling between the dot and the leads. The model allows us to calculate, at any temperature T , the equilibrium Josephson current through the dot in a very straightforward way as a function of /J . The behavior of the current allows us to distinguish the four types of hybrid junctions: 0, 0 , π , and π. The presence of the 0- and 0 -junction configurations are intrinsically linked to the Kondo effect in the quantum dot, while the π- and π -junction configurations are driven by the superconductivity in the leads. The Josephson critical current has a non-monotonic behavior with temperature, that may be used for the experimental characterization of the fundamental 0 − π transition. The model allows us to obtain easily a phase diagram /J vs temperature, from where we can obtain an overall picture on the stability of the different types of junctions. From the explicit analytical expressions for the ground-state, low-energy excitations, free energy, and Josephson current, it is easy to understand the physical nature of the main features of the critical current and the phase diagram. The results, obtained with a minimum of numerical effort, are in a good qualitative agreement with more demanding calculational approaches aimed to solve the full model.
Fil: Allub, Roberto Jose. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Proetto, Cesar Ramon. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description The case of a quantum dot connected to two superconducting leads is studied by using the narrow-band limit to describe the superconducting degrees of freedom. The model provides a simple theoretical framework, almost analytical, to analyze the interplay between the Kondo effect, superconductivity, and finite temperature. In the quantum dot Kondo regime, the model is completely characterized by the ratio /J , with the superconducting gap and J an effective antiferromagnetic exchange coupling between the dot and the leads. The model allows us to calculate, at any temperature T , the equilibrium Josephson current through the dot in a very straightforward way as a function of /J . The behavior of the current allows us to distinguish the four types of hybrid junctions: 0, 0 , π , and π. The presence of the 0- and 0 -junction configurations are intrinsically linked to the Kondo effect in the quantum dot, while the π- and π -junction configurations are driven by the superconductivity in the leads. The Josephson critical current has a non-monotonic behavior with temperature, that may be used for the experimental characterization of the fundamental 0 − π transition. The model allows us to obtain easily a phase diagram /J vs temperature, from where we can obtain an overall picture on the stability of the different types of junctions. From the explicit analytical expressions for the ground-state, low-energy excitations, free energy, and Josephson current, it is easy to understand the physical nature of the main features of the critical current and the phase diagram. The results, obtained with a minimum of numerical effort, are in a good qualitative agreement with more demanding calculational approaches aimed to solve the full model.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53733
Allub, Roberto Jose; Proetto, Cesar Ramon; Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 91; 4; 30-1-2015; 4544201-4544211
1098-0121
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53733
identifier_str_mv Allub, Roberto Jose; Proetto, Cesar Ramon; Hybrid quantum dot - superconducting systems: Josephson current and Kondo effect in the narrow-band limit; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 91; 4; 30-1-2015; 4544201-4544211
1098-0121
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/ 10.1103/PhysRevB.91.045442
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.91.045442
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269417730211840
score 12.885934