Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion

Autores
Benvenuto, Omar Gustavo; Fortier, Andrea; Brunini, Adrian
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Giant planet formation process is still not completely understood. The current most accepted paradigm, the core instability model, explains several observed properties of the Solar System’s giant planets but, to date, has faced difficulties to account for a formation time shorter than the observational estimates of protoplanetary disks’ lifetimes, especially for the cases of Uranus and Neptune. In the context of this model, and considering a recently proposed primordial Solar System orbital structure, we performed numerical calculations of giant planet formation. Our results show that if accreted planetesimals follow a size distribution in which most of the mass lies in 30–100 m sized bodies, Jupiter, Saturn, Uranus and Neptune may have formed according to the nucleated instability scenario. The formation of each planet occurs within the time constraints and they end up with core masses in good agreement with present estimations.
Fil: Benvenuto, Omar Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Fortier, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Brunini, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Materia
Planetary formation
Accretion
Planetesimal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42819

id CONICETDig_5be78e4605ff085b4e9e3a264ff2d305
oai_identifier_str oai:ri.conicet.gov.ar:11336/42819
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretionBenvenuto, Omar GustavoFortier, AndreaBrunini, AdrianPlanetary formationAccretionPlanetesimalhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Giant planet formation process is still not completely understood. The current most accepted paradigm, the core instability model, explains several observed properties of the Solar System’s giant planets but, to date, has faced difficulties to account for a formation time shorter than the observational estimates of protoplanetary disks’ lifetimes, especially for the cases of Uranus and Neptune. In the context of this model, and considering a recently proposed primordial Solar System orbital structure, we performed numerical calculations of giant planet formation. Our results show that if accreted planetesimals follow a size distribution in which most of the mass lies in 30–100 m sized bodies, Jupiter, Saturn, Uranus and Neptune may have formed according to the nucleated instability scenario. The formation of each planet occurs within the time constraints and they end up with core masses in good agreement with present estimations.Fil: Benvenuto, Omar Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Fortier, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Brunini, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaAcademic Press Inc Elsevier Science2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42819Benvenuto, Omar Gustavo; Fortier, Andrea; Brunini, Adrian; Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion; Academic Press Inc Elsevier Science; Icarus; 204; 2; 12-2009; 752-7550019-1035CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.icarus.2009.07.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0019103509002875?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:08Zoai:ri.conicet.gov.ar:11336/42819instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:09.108CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion
title Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion
spellingShingle Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion
Benvenuto, Omar Gustavo
Planetary formation
Accretion
Planetesimal
title_short Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion
title_full Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion
title_fullStr Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion
title_full_unstemmed Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion
title_sort Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion
dc.creator.none.fl_str_mv Benvenuto, Omar Gustavo
Fortier, Andrea
Brunini, Adrian
author Benvenuto, Omar Gustavo
author_facet Benvenuto, Omar Gustavo
Fortier, Andrea
Brunini, Adrian
author_role author
author2 Fortier, Andrea
Brunini, Adrian
author2_role author
author
dc.subject.none.fl_str_mv Planetary formation
Accretion
Planetesimal
topic Planetary formation
Accretion
Planetesimal
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Giant planet formation process is still not completely understood. The current most accepted paradigm, the core instability model, explains several observed properties of the Solar System’s giant planets but, to date, has faced difficulties to account for a formation time shorter than the observational estimates of protoplanetary disks’ lifetimes, especially for the cases of Uranus and Neptune. In the context of this model, and considering a recently proposed primordial Solar System orbital structure, we performed numerical calculations of giant planet formation. Our results show that if accreted planetesimals follow a size distribution in which most of the mass lies in 30–100 m sized bodies, Jupiter, Saturn, Uranus and Neptune may have formed according to the nucleated instability scenario. The formation of each planet occurs within the time constraints and they end up with core masses in good agreement with present estimations.
Fil: Benvenuto, Omar Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Fortier, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Brunini, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
description Giant planet formation process is still not completely understood. The current most accepted paradigm, the core instability model, explains several observed properties of the Solar System’s giant planets but, to date, has faced difficulties to account for a formation time shorter than the observational estimates of protoplanetary disks’ lifetimes, especially for the cases of Uranus and Neptune. In the context of this model, and considering a recently proposed primordial Solar System orbital structure, we performed numerical calculations of giant planet formation. Our results show that if accreted planetesimals follow a size distribution in which most of the mass lies in 30–100 m sized bodies, Jupiter, Saturn, Uranus and Neptune may have formed according to the nucleated instability scenario. The formation of each planet occurs within the time constraints and they end up with core masses in good agreement with present estimations.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42819
Benvenuto, Omar Gustavo; Fortier, Andrea; Brunini, Adrian; Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion; Academic Press Inc Elsevier Science; Icarus; 204; 2; 12-2009; 752-755
0019-1035
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42819
identifier_str_mv Benvenuto, Omar Gustavo; Fortier, Andrea; Brunini, Adrian; Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion; Academic Press Inc Elsevier Science; Icarus; 204; 2; 12-2009; 752-755
0019-1035
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.icarus.2009.07.003
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0019103509002875?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614285001490433
score 13.070432