Highly invasive tree species are more dependent on mutualisms
- Autores
- Moyano, Jaime; Rodriguez Cabal, Mariano Alberto; Nuñez, Martin Andres
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Why some species become invasive while others do not remains an elusive question. It has been proposed that invasive species should depend less on mutualisms, because their spread would then be less constrained by the availability of mutualistic partners. We tested this idea with the genus Pinus, whose degree of invasiveness is known at the species level (being highly and negatively correlated with seed size) and which forms obligate mutualistic associations with ectomycorrhizal fungi (EMF). Mycorrhizal dependence is defined as the degree to which a plant needs the mycorrhizal fungi to show the maximum growth. In this regard, we use plant growth response to mycorrhizal fungi as a proxy for mycorrhizal dependence. We assessed the responsiveness of Pinus species to EMF using 1206 contrasts published on 34 species, and matched these data with data on Pinus species invasiveness. Surprisingly, we found that species which are more invasive depend more on mutualisms (EMF). Seedling growth of species with smaller seeds benefited more from mutualisms, indicating a higher dependence. A higher reliance on EMF could be part of a strategy in which small-seeded species produce more seeds that can disperse further, and these species are likely to establish only if facilitated by mycorrhizal fungi. On the contrary, big seeded species showed a lower dependence on EMF, which may be explained by their tolerance to stressful conditions during establishment. However, the limited dispersal of larger seeds may limit the spread of these species. We present strong evidence against a venerable belief in ecology that species that rely more on mutualisms are less prone to invade, and suggest that in certain circumstances greater reliance on mutualists can increase spread capacity.
Fil: Moyano, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Rodriguez Cabal, Mariano Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina - Materia
-
MYCORRHIZA
FACILITATION
MUTUALISTS
PINUS
PLANT INVASIONS
SEED SIZE
SEEDLING GROWTH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108778
Ver los metadatos del registro completo
id |
CONICETDig_5bb3c5e09560ea5ae0ad4d427039239d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108778 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Highly invasive tree species are more dependent on mutualismsMoyano, JaimeRodriguez Cabal, Mariano AlbertoNuñez, Martin AndresMYCORRHIZAFACILITATIONMUTUALISTSPINUSPLANT INVASIONSSEED SIZESEEDLING GROWTHhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Why some species become invasive while others do not remains an elusive question. It has been proposed that invasive species should depend less on mutualisms, because their spread would then be less constrained by the availability of mutualistic partners. We tested this idea with the genus Pinus, whose degree of invasiveness is known at the species level (being highly and negatively correlated with seed size) and which forms obligate mutualistic associations with ectomycorrhizal fungi (EMF). Mycorrhizal dependence is defined as the degree to which a plant needs the mycorrhizal fungi to show the maximum growth. In this regard, we use plant growth response to mycorrhizal fungi as a proxy for mycorrhizal dependence. We assessed the responsiveness of Pinus species to EMF using 1206 contrasts published on 34 species, and matched these data with data on Pinus species invasiveness. Surprisingly, we found that species which are more invasive depend more on mutualisms (EMF). Seedling growth of species with smaller seeds benefited more from mutualisms, indicating a higher dependence. A higher reliance on EMF could be part of a strategy in which small-seeded species produce more seeds that can disperse further, and these species are likely to establish only if facilitated by mycorrhizal fungi. On the contrary, big seeded species showed a lower dependence on EMF, which may be explained by their tolerance to stressful conditions during establishment. However, the limited dispersal of larger seeds may limit the spread of these species. We present strong evidence against a venerable belief in ecology that species that rely more on mutualisms are less prone to invade, and suggest that in certain circumstances greater reliance on mutualists can increase spread capacity.Fil: Moyano, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Rodriguez Cabal, Mariano Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaEcological Society of America2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108778Moyano, Jaime; Rodriguez Cabal, Mariano Alberto; Nuñez, Martin Andres; Highly invasive tree species are more dependent on mutualisms; Ecological Society of America; Ecology; 101; 5; 1-2020; 1-250012-96581939-9170CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/ecy.2997info:eu-repo/semantics/altIdentifier/doi/10.1002/ecy.2997info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:10Zoai:ri.conicet.gov.ar:11336/108778instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:11.237CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Highly invasive tree species are more dependent on mutualisms |
title |
Highly invasive tree species are more dependent on mutualisms |
spellingShingle |
Highly invasive tree species are more dependent on mutualisms Moyano, Jaime MYCORRHIZA FACILITATION MUTUALISTS PINUS PLANT INVASIONS SEED SIZE SEEDLING GROWTH |
title_short |
Highly invasive tree species are more dependent on mutualisms |
title_full |
Highly invasive tree species are more dependent on mutualisms |
title_fullStr |
Highly invasive tree species are more dependent on mutualisms |
title_full_unstemmed |
Highly invasive tree species are more dependent on mutualisms |
title_sort |
Highly invasive tree species are more dependent on mutualisms |
dc.creator.none.fl_str_mv |
Moyano, Jaime Rodriguez Cabal, Mariano Alberto Nuñez, Martin Andres |
author |
Moyano, Jaime |
author_facet |
Moyano, Jaime Rodriguez Cabal, Mariano Alberto Nuñez, Martin Andres |
author_role |
author |
author2 |
Rodriguez Cabal, Mariano Alberto Nuñez, Martin Andres |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MYCORRHIZA FACILITATION MUTUALISTS PINUS PLANT INVASIONS SEED SIZE SEEDLING GROWTH |
topic |
MYCORRHIZA FACILITATION MUTUALISTS PINUS PLANT INVASIONS SEED SIZE SEEDLING GROWTH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Why some species become invasive while others do not remains an elusive question. It has been proposed that invasive species should depend less on mutualisms, because their spread would then be less constrained by the availability of mutualistic partners. We tested this idea with the genus Pinus, whose degree of invasiveness is known at the species level (being highly and negatively correlated with seed size) and which forms obligate mutualistic associations with ectomycorrhizal fungi (EMF). Mycorrhizal dependence is defined as the degree to which a plant needs the mycorrhizal fungi to show the maximum growth. In this regard, we use plant growth response to mycorrhizal fungi as a proxy for mycorrhizal dependence. We assessed the responsiveness of Pinus species to EMF using 1206 contrasts published on 34 species, and matched these data with data on Pinus species invasiveness. Surprisingly, we found that species which are more invasive depend more on mutualisms (EMF). Seedling growth of species with smaller seeds benefited more from mutualisms, indicating a higher dependence. A higher reliance on EMF could be part of a strategy in which small-seeded species produce more seeds that can disperse further, and these species are likely to establish only if facilitated by mycorrhizal fungi. On the contrary, big seeded species showed a lower dependence on EMF, which may be explained by their tolerance to stressful conditions during establishment. However, the limited dispersal of larger seeds may limit the spread of these species. We present strong evidence against a venerable belief in ecology that species that rely more on mutualisms are less prone to invade, and suggest that in certain circumstances greater reliance on mutualists can increase spread capacity. Fil: Moyano, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Rodriguez Cabal, Mariano Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina |
description |
Why some species become invasive while others do not remains an elusive question. It has been proposed that invasive species should depend less on mutualisms, because their spread would then be less constrained by the availability of mutualistic partners. We tested this idea with the genus Pinus, whose degree of invasiveness is known at the species level (being highly and negatively correlated with seed size) and which forms obligate mutualistic associations with ectomycorrhizal fungi (EMF). Mycorrhizal dependence is defined as the degree to which a plant needs the mycorrhizal fungi to show the maximum growth. In this regard, we use plant growth response to mycorrhizal fungi as a proxy for mycorrhizal dependence. We assessed the responsiveness of Pinus species to EMF using 1206 contrasts published on 34 species, and matched these data with data on Pinus species invasiveness. Surprisingly, we found that species which are more invasive depend more on mutualisms (EMF). Seedling growth of species with smaller seeds benefited more from mutualisms, indicating a higher dependence. A higher reliance on EMF could be part of a strategy in which small-seeded species produce more seeds that can disperse further, and these species are likely to establish only if facilitated by mycorrhizal fungi. On the contrary, big seeded species showed a lower dependence on EMF, which may be explained by their tolerance to stressful conditions during establishment. However, the limited dispersal of larger seeds may limit the spread of these species. We present strong evidence against a venerable belief in ecology that species that rely more on mutualisms are less prone to invade, and suggest that in certain circumstances greater reliance on mutualists can increase spread capacity. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108778 Moyano, Jaime; Rodriguez Cabal, Mariano Alberto; Nuñez, Martin Andres; Highly invasive tree species are more dependent on mutualisms; Ecological Society of America; Ecology; 101; 5; 1-2020; 1-25 0012-9658 1939-9170 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/108778 |
identifier_str_mv |
Moyano, Jaime; Rodriguez Cabal, Mariano Alberto; Nuñez, Martin Andres; Highly invasive tree species are more dependent on mutualisms; Ecological Society of America; Ecology; 101; 5; 1-2020; 1-25 0012-9658 1939-9170 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/ecy.2997 info:eu-repo/semantics/altIdentifier/doi/10.1002/ecy.2997 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Ecological Society of America |
publisher.none.fl_str_mv |
Ecological Society of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614026715201536 |
score |
13.070432 |