Simulación del transporte de calor en nanoestructuras de silicio
- Autores
- Mancardo Viotti, Agustin Matias; Bea, Edgar Alejandro; Carusela, María Florencia; Monastra, Alejandro Gabriel; Soba, Alejandro
- Año de publicación
- 2018
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- En este trabajo se calcula la conductividad térmica de una nanoestructura de silicio sometida a un gradiente térmico, en una situación de no-equilibrio termodinámico. El sistema se simula a través de dinámica molecular, utilizando dos modelos para los potenciales interatómicos: i) un potencial clásico empírico Tersoff-Brenner; ii) un potencial Tight-Binding semi-empírico. Para el primer caso se recurre al software libre LAMMPS y para el segundo se desarrolla un código. En este caso se analiza en detalle la eficiencia de distintas rutinas para la diagonalización de matrices, necesaria para calcular las fuerzas interatómicas, así como la utilización de diferentes modos de paralelización. Se presenta un detallado estudio de la eficiencia del código desarrollado.
We calculate the thermal conductivity of a Silicon nanostructure subject to a temperature gradient, in a non equilibrium thermodynamical state. We simulate the system by molecular dynamics using two models for the interatomic potentials: i) an empirical classical Tersoff-Brenner potential; ii) a semiempirical Tight-Binding potential. For the first case we use the free software LAMMPS and for the second we develop a code. In this last case we analyze the performance of the different routines used for diagonalizing matrices, necessary to compute the interatomic forces and we discuss the different parallelization implementations. We present a detailed study of the efficiency of the implemented code.
Fil: Mancardo Viotti, Agustin Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Bea, Edgar Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carusela, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Monastra, Alejandro Gabriel. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina - Materia
-
Silicio
Nanoestructura
Dinamica Molecular
Potencial Tight Binding
Potencial Tersoff-Brenner
Analisis de Eficiencia
Conductividad Termica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/103545
Ver los metadatos del registro completo
id |
CONICETDig_5b76257c1faf2e3ee167642f5d640fb6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/103545 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simulación del transporte de calor en nanoestructuras de silicioSimulation of heat transport in silicon nanostructuresMancardo Viotti, Agustin MatiasBea, Edgar AlejandroCarusela, María FlorenciaMonastra, Alejandro GabrielSoba, AlejandroSilicioNanoestructuraDinamica MolecularPotencial Tight BindingPotencial Tersoff-BrennerAnalisis de EficienciaConductividad Termicahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1En este trabajo se calcula la conductividad térmica de una nanoestructura de silicio sometida a un gradiente térmico, en una situación de no-equilibrio termodinámico. El sistema se simula a través de dinámica molecular, utilizando dos modelos para los potenciales interatómicos: i) un potencial clásico empírico Tersoff-Brenner; ii) un potencial Tight-Binding semi-empírico. Para el primer caso se recurre al software libre LAMMPS y para el segundo se desarrolla un código. En este caso se analiza en detalle la eficiencia de distintas rutinas para la diagonalización de matrices, necesaria para calcular las fuerzas interatómicas, así como la utilización de diferentes modos de paralelización. Se presenta un detallado estudio de la eficiencia del código desarrollado.We calculate the thermal conductivity of a Silicon nanostructure subject to a temperature gradient, in a non equilibrium thermodynamical state. We simulate the system by molecular dynamics using two models for the interatomic potentials: i) an empirical classical Tersoff-Brenner potential; ii) a semiempirical Tight-Binding potential. For the first case we use the free software LAMMPS and for the second we develop a code. In this last case we analyze the performance of the different routines used for diagonalizing matrices, necessary to compute the interatomic forces and we discuss the different parallelization implementations. We present a detailed study of the efficiency of the implemented code.Fil: Mancardo Viotti, Agustin Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Bea, Edgar Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carusela, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Monastra, Alejandro Gabriel. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaAsociación Argentina de Mecánica Computacional2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/103545Mancardo Viotti, Agustin Matias; Bea, Edgar Alejandro; Carusela, María Florencia; Monastra, Alejandro Gabriel; Soba, Alejandro; Simulación del transporte de calor en nanoestructuras de silicio; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 36; 47; 12-2018; 2179-21872591-3522CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5747info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:21Zoai:ri.conicet.gov.ar:11336/103545instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:22.116CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simulación del transporte de calor en nanoestructuras de silicio Simulation of heat transport in silicon nanostructures |
title |
Simulación del transporte de calor en nanoestructuras de silicio |
spellingShingle |
Simulación del transporte de calor en nanoestructuras de silicio Mancardo Viotti, Agustin Matias Silicio Nanoestructura Dinamica Molecular Potencial Tight Binding Potencial Tersoff-Brenner Analisis de Eficiencia Conductividad Termica |
title_short |
Simulación del transporte de calor en nanoestructuras de silicio |
title_full |
Simulación del transporte de calor en nanoestructuras de silicio |
title_fullStr |
Simulación del transporte de calor en nanoestructuras de silicio |
title_full_unstemmed |
Simulación del transporte de calor en nanoestructuras de silicio |
title_sort |
Simulación del transporte de calor en nanoestructuras de silicio |
dc.creator.none.fl_str_mv |
Mancardo Viotti, Agustin Matias Bea, Edgar Alejandro Carusela, María Florencia Monastra, Alejandro Gabriel Soba, Alejandro |
author |
Mancardo Viotti, Agustin Matias |
author_facet |
Mancardo Viotti, Agustin Matias Bea, Edgar Alejandro Carusela, María Florencia Monastra, Alejandro Gabriel Soba, Alejandro |
author_role |
author |
author2 |
Bea, Edgar Alejandro Carusela, María Florencia Monastra, Alejandro Gabriel Soba, Alejandro |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Silicio Nanoestructura Dinamica Molecular Potencial Tight Binding Potencial Tersoff-Brenner Analisis de Eficiencia Conductividad Termica |
topic |
Silicio Nanoestructura Dinamica Molecular Potencial Tight Binding Potencial Tersoff-Brenner Analisis de Eficiencia Conductividad Termica |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
En este trabajo se calcula la conductividad térmica de una nanoestructura de silicio sometida a un gradiente térmico, en una situación de no-equilibrio termodinámico. El sistema se simula a través de dinámica molecular, utilizando dos modelos para los potenciales interatómicos: i) un potencial clásico empírico Tersoff-Brenner; ii) un potencial Tight-Binding semi-empírico. Para el primer caso se recurre al software libre LAMMPS y para el segundo se desarrolla un código. En este caso se analiza en detalle la eficiencia de distintas rutinas para la diagonalización de matrices, necesaria para calcular las fuerzas interatómicas, así como la utilización de diferentes modos de paralelización. Se presenta un detallado estudio de la eficiencia del código desarrollado. We calculate the thermal conductivity of a Silicon nanostructure subject to a temperature gradient, in a non equilibrium thermodynamical state. We simulate the system by molecular dynamics using two models for the interatomic potentials: i) an empirical classical Tersoff-Brenner potential; ii) a semiempirical Tight-Binding potential. For the first case we use the free software LAMMPS and for the second we develop a code. In this last case we analyze the performance of the different routines used for diagonalizing matrices, necessary to compute the interatomic forces and we discuss the different parallelization implementations. We present a detailed study of the efficiency of the implemented code. Fil: Mancardo Viotti, Agustin Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Bea, Edgar Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Carusela, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Monastra, Alejandro Gabriel. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina |
description |
En este trabajo se calcula la conductividad térmica de una nanoestructura de silicio sometida a un gradiente térmico, en una situación de no-equilibrio termodinámico. El sistema se simula a través de dinámica molecular, utilizando dos modelos para los potenciales interatómicos: i) un potencial clásico empírico Tersoff-Brenner; ii) un potencial Tight-Binding semi-empírico. Para el primer caso se recurre al software libre LAMMPS y para el segundo se desarrolla un código. En este caso se analiza en detalle la eficiencia de distintas rutinas para la diagonalización de matrices, necesaria para calcular las fuerzas interatómicas, así como la utilización de diferentes modos de paralelización. Se presenta un detallado estudio de la eficiencia del código desarrollado. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/103545 Mancardo Viotti, Agustin Matias; Bea, Edgar Alejandro; Carusela, María Florencia; Monastra, Alejandro Gabriel; Soba, Alejandro; Simulación del transporte de calor en nanoestructuras de silicio; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 36; 47; 12-2018; 2179-2187 2591-3522 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/103545 |
identifier_str_mv |
Mancardo Viotti, Agustin Matias; Bea, Edgar Alejandro; Carusela, María Florencia; Monastra, Alejandro Gabriel; Soba, Alejandro; Simulación del transporte de calor en nanoestructuras de silicio; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 36; 47; 12-2018; 2179-2187 2591-3522 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5747 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614337125154816 |
score |
13.070432 |