Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ rays

Autores
Kornecki, Paula; Peretti, E.; del Palacio, Santiago; Benaglia, Paula; Pellizza González, Leonardo Javier
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Star-forming galaxies emit non-thermal radiation from radio to γ rays. Observations show that their radio and γ-ray luminosities scale with their star formation rates, supporting the hypothesis that non-thermal radiation is emitted by cosmic rays produced by their stellar populations. However, the nature of the main cosmic-ray transport processes that shape the emission in these galaxies is still poorly understood, especially at low star formation rates. Aims. Our aim is to investigate the main mechanisms of global cosmic-ray transport and cooling in star-forming galaxies. The way they contribute to shaping the relations between non-thermal luminosities and star formation rates could shed light onto their nature, and allow us to quantify their relative importance at different star formation rates. Methods. We developed a model to compute the cosmic-ray populations of star-forming galaxies, taking into account their production, transport, and cooling. The model is parametrised only through global galaxy properties, and describes the non-thermal emission in radio (at 1.4 GHz and 150 MHz) and γ rays (in the 0.1-100 GeV band). We focused on the role of diffusive and advective transport by galactic winds, either driven by turbulent or thermal instabilities. We compared model predictions to observations, for which we compiled a homogeneous set of luminosities in these radio bands, and updated those available in γ rays. Results. Our model reproduces reasonably well the observed relations between the γ-ray or 1.4 GHz radio luminosities and the star formation rate, assuming a single power-law scaling of the magnetic field (with index β = 0.3) and winds blowing either at Alfvenic speeds (∼tens of km s-1, for 5 Mpdbl yr-1) or typical starburst wind velocities (∼hundreds of km s-1, for 5 Mpdbl yr-1). Escape of cosmic rays is negligible for 30 Mpdbl yr-1. A constant ionisation fraction of the interstellar medium fails to reproduce the 150 MHz radio luminosity throughout the whole star formation rate range. Conclusions. Our results reinforce the idea that galaxies with high star formation rates are cosmic-ray calorimeters, and that the main mechanism driving proton escape is diffusion, whereas electron escape also proceeds via wind advection. They also suggest that these winds should be cosmic-ray or thermally driven at low and intermediate star formation rates, respectively. Our results globally support that magneto-hydrodynamic turbulence is responsible for the dependence of the magnetic field strength on the star formation rate and that the ionisation fraction is strongly disfavoured to be constant throughout the whole range of star formation rates.
Fil: Kornecki, Paula. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Peretti, E.. Universidad de Copenhagen; Dinamarca
Fil: del Palacio, Santiago. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Benaglia, Paula. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Pellizza González, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Materia
GALAXIES: STAR FORMATION
GALAXIES: STARBURST
GAMMA RAYS: GALAXIES
RADIO CONTINUUM: GALAXIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/215306

id CONICETDig_5b54c6c2f7cc392507d15ffb909f13d8
oai_identifier_str oai:ri.conicet.gov.ar:11336/215306
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ raysKornecki, PaulaPeretti, E.del Palacio, SantiagoBenaglia, PaulaPellizza González, Leonardo JavierGALAXIES: STAR FORMATIONGALAXIES: STARBURSTGAMMA RAYS: GALAXIESRADIO CONTINUUM: GALAXIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Star-forming galaxies emit non-thermal radiation from radio to γ rays. Observations show that their radio and γ-ray luminosities scale with their star formation rates, supporting the hypothesis that non-thermal radiation is emitted by cosmic rays produced by their stellar populations. However, the nature of the main cosmic-ray transport processes that shape the emission in these galaxies is still poorly understood, especially at low star formation rates. Aims. Our aim is to investigate the main mechanisms of global cosmic-ray transport and cooling in star-forming galaxies. The way they contribute to shaping the relations between non-thermal luminosities and star formation rates could shed light onto their nature, and allow us to quantify their relative importance at different star formation rates. Methods. We developed a model to compute the cosmic-ray populations of star-forming galaxies, taking into account their production, transport, and cooling. The model is parametrised only through global galaxy properties, and describes the non-thermal emission in radio (at 1.4 GHz and 150 MHz) and γ rays (in the 0.1-100 GeV band). We focused on the role of diffusive and advective transport by galactic winds, either driven by turbulent or thermal instabilities. We compared model predictions to observations, for which we compiled a homogeneous set of luminosities in these radio bands, and updated those available in γ rays. Results. Our model reproduces reasonably well the observed relations between the γ-ray or 1.4 GHz radio luminosities and the star formation rate, assuming a single power-law scaling of the magnetic field (with index β = 0.3) and winds blowing either at Alfvenic speeds (∼tens of km s-1, for 5 Mpdbl yr-1) or typical starburst wind velocities (∼hundreds of km s-1, for 5 Mpdbl yr-1). Escape of cosmic rays is negligible for 30 Mpdbl yr-1. A constant ionisation fraction of the interstellar medium fails to reproduce the 150 MHz radio luminosity throughout the whole star formation rate range. Conclusions. Our results reinforce the idea that galaxies with high star formation rates are cosmic-ray calorimeters, and that the main mechanism driving proton escape is diffusion, whereas electron escape also proceeds via wind advection. They also suggest that these winds should be cosmic-ray or thermally driven at low and intermediate star formation rates, respectively. Our results globally support that magneto-hydrodynamic turbulence is responsible for the dependence of the magnetic field strength on the star formation rate and that the ionisation fraction is strongly disfavoured to be constant throughout the whole range of star formation rates.Fil: Kornecki, Paula. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Peretti, E.. Universidad de Copenhagen; DinamarcaFil: del Palacio, Santiago. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Benaglia, Paula. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Pellizza González, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaEDP Sciences2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215306Kornecki, Paula; Peretti, E.; del Palacio, Santiago; Benaglia, Paula; Pellizza González, Leonardo Javier; Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ rays; EDP Sciences; Astronomy and Astrophysics; 657; 1-2022; 1-210004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202141295info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:42Zoai:ri.conicet.gov.ar:11336/215306instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:42.468CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ rays
title Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ rays
spellingShingle Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ rays
Kornecki, Paula
GALAXIES: STAR FORMATION
GALAXIES: STARBURST
GAMMA RAYS: GALAXIES
RADIO CONTINUUM: GALAXIES
title_short Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ rays
title_full Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ rays
title_fullStr Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ rays
title_full_unstemmed Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ rays
title_sort Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ rays
dc.creator.none.fl_str_mv Kornecki, Paula
Peretti, E.
del Palacio, Santiago
Benaglia, Paula
Pellizza González, Leonardo Javier
author Kornecki, Paula
author_facet Kornecki, Paula
Peretti, E.
del Palacio, Santiago
Benaglia, Paula
Pellizza González, Leonardo Javier
author_role author
author2 Peretti, E.
del Palacio, Santiago
Benaglia, Paula
Pellizza González, Leonardo Javier
author2_role author
author
author
author
dc.subject.none.fl_str_mv GALAXIES: STAR FORMATION
GALAXIES: STARBURST
GAMMA RAYS: GALAXIES
RADIO CONTINUUM: GALAXIES
topic GALAXIES: STAR FORMATION
GALAXIES: STARBURST
GAMMA RAYS: GALAXIES
RADIO CONTINUUM: GALAXIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. Star-forming galaxies emit non-thermal radiation from radio to γ rays. Observations show that their radio and γ-ray luminosities scale with their star formation rates, supporting the hypothesis that non-thermal radiation is emitted by cosmic rays produced by their stellar populations. However, the nature of the main cosmic-ray transport processes that shape the emission in these galaxies is still poorly understood, especially at low star formation rates. Aims. Our aim is to investigate the main mechanisms of global cosmic-ray transport and cooling in star-forming galaxies. The way they contribute to shaping the relations between non-thermal luminosities and star formation rates could shed light onto their nature, and allow us to quantify their relative importance at different star formation rates. Methods. We developed a model to compute the cosmic-ray populations of star-forming galaxies, taking into account their production, transport, and cooling. The model is parametrised only through global galaxy properties, and describes the non-thermal emission in radio (at 1.4 GHz and 150 MHz) and γ rays (in the 0.1-100 GeV band). We focused on the role of diffusive and advective transport by galactic winds, either driven by turbulent or thermal instabilities. We compared model predictions to observations, for which we compiled a homogeneous set of luminosities in these radio bands, and updated those available in γ rays. Results. Our model reproduces reasonably well the observed relations between the γ-ray or 1.4 GHz radio luminosities and the star formation rate, assuming a single power-law scaling of the magnetic field (with index β = 0.3) and winds blowing either at Alfvenic speeds (∼tens of km s-1, for 5 Mpdbl yr-1) or typical starburst wind velocities (∼hundreds of km s-1, for 5 Mpdbl yr-1). Escape of cosmic rays is negligible for 30 Mpdbl yr-1. A constant ionisation fraction of the interstellar medium fails to reproduce the 150 MHz radio luminosity throughout the whole star formation rate range. Conclusions. Our results reinforce the idea that galaxies with high star formation rates are cosmic-ray calorimeters, and that the main mechanism driving proton escape is diffusion, whereas electron escape also proceeds via wind advection. They also suggest that these winds should be cosmic-ray or thermally driven at low and intermediate star formation rates, respectively. Our results globally support that magneto-hydrodynamic turbulence is responsible for the dependence of the magnetic field strength on the star formation rate and that the ionisation fraction is strongly disfavoured to be constant throughout the whole range of star formation rates.
Fil: Kornecki, Paula. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Peretti, E.. Universidad de Copenhagen; Dinamarca
Fil: del Palacio, Santiago. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Benaglia, Paula. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Pellizza González, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
description Context. Star-forming galaxies emit non-thermal radiation from radio to γ rays. Observations show that their radio and γ-ray luminosities scale with their star formation rates, supporting the hypothesis that non-thermal radiation is emitted by cosmic rays produced by their stellar populations. However, the nature of the main cosmic-ray transport processes that shape the emission in these galaxies is still poorly understood, especially at low star formation rates. Aims. Our aim is to investigate the main mechanisms of global cosmic-ray transport and cooling in star-forming galaxies. The way they contribute to shaping the relations between non-thermal luminosities and star formation rates could shed light onto their nature, and allow us to quantify their relative importance at different star formation rates. Methods. We developed a model to compute the cosmic-ray populations of star-forming galaxies, taking into account their production, transport, and cooling. The model is parametrised only through global galaxy properties, and describes the non-thermal emission in radio (at 1.4 GHz and 150 MHz) and γ rays (in the 0.1-100 GeV band). We focused on the role of diffusive and advective transport by galactic winds, either driven by turbulent or thermal instabilities. We compared model predictions to observations, for which we compiled a homogeneous set of luminosities in these radio bands, and updated those available in γ rays. Results. Our model reproduces reasonably well the observed relations between the γ-ray or 1.4 GHz radio luminosities and the star formation rate, assuming a single power-law scaling of the magnetic field (with index β = 0.3) and winds blowing either at Alfvenic speeds (∼tens of km s-1, for 5 Mpdbl yr-1) or typical starburst wind velocities (∼hundreds of km s-1, for 5 Mpdbl yr-1). Escape of cosmic rays is negligible for 30 Mpdbl yr-1. A constant ionisation fraction of the interstellar medium fails to reproduce the 150 MHz radio luminosity throughout the whole star formation rate range. Conclusions. Our results reinforce the idea that galaxies with high star formation rates are cosmic-ray calorimeters, and that the main mechanism driving proton escape is diffusion, whereas electron escape also proceeds via wind advection. They also suggest that these winds should be cosmic-ray or thermally driven at low and intermediate star formation rates, respectively. Our results globally support that magneto-hydrodynamic turbulence is responsible for the dependence of the magnetic field strength on the star formation rate and that the ionisation fraction is strongly disfavoured to be constant throughout the whole range of star formation rates.
publishDate 2022
dc.date.none.fl_str_mv 2022-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/215306
Kornecki, Paula; Peretti, E.; del Palacio, Santiago; Benaglia, Paula; Pellizza González, Leonardo Javier; Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ rays; EDP Sciences; Astronomy and Astrophysics; 657; 1-2022; 1-21
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/215306
identifier_str_mv Kornecki, Paula; Peretti, E.; del Palacio, Santiago; Benaglia, Paula; Pellizza González, Leonardo Javier; Exploring the physics behind the non-thermal emission from star-forming galaxies detected in γ rays; EDP Sciences; Astronomy and Astrophysics; 657; 1-2022; 1-21
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202141295
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270092057903104
score 13.13397