The Structure of Bit-String Similarity Networks

Autores
Schneider, David Marcelo; Zanette, Damian Horacio
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the structural properties of networks formed by random sets of bit strings—namely the ordered arrays of binary variables representing, for instance, genetic information or cultural profiles. Two bit strings are connected by a network link when they are sufficiently similar to each other, i.e., when their Hamming distance is below a certain threshold. Using both analytical and numerical techniques, we determine the degree distribution and the conditions for the existence of a giant component in this kind of network. In addition, we analyze their clustering, assortativity, and mean geodesic distance. We show that these properties combine features specific to random networks with characteristics that derive from the Hamming metrics implicit in the definition of similarity between bit strings.
Fil: Schneider, David Marcelo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Zanette, Damian Horacio. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
BIT-STRING MODELS
SIMILARITY NETWORKS
STRUCTURAL PROPERTIES
NETWORK THEORY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/274874

id CONICETDig_5b243d64e378163bee26d1d977c75dc3
oai_identifier_str oai:ri.conicet.gov.ar:11336/274874
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Structure of Bit-String Similarity NetworksSchneider, David MarceloZanette, Damian HoracioBIT-STRING MODELSSIMILARITY NETWORKSSTRUCTURAL PROPERTIESNETWORK THEORYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the structural properties of networks formed by random sets of bit strings—namely the ordered arrays of binary variables representing, for instance, genetic information or cultural profiles. Two bit strings are connected by a network link when they are sufficiently similar to each other, i.e., when their Hamming distance is below a certain threshold. Using both analytical and numerical techniques, we determine the degree distribution and the conditions for the existence of a giant component in this kind of network. In addition, we analyze their clustering, assortativity, and mean geodesic distance. We show that these properties combine features specific to random networks with characteristics that derive from the Hamming metrics implicit in the definition of similarity between bit strings.Fil: Schneider, David Marcelo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Zanette, Damian Horacio. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaMolecular Diversity Preservation International2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274874Schneider, David Marcelo; Zanette, Damian Horacio; The Structure of Bit-String Similarity Networks; Molecular Diversity Preservation International; Entropy; 27; 1; 1-2025; 1-131099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/1/57info:eu-repo/semantics/altIdentifier/doi/10.3390/e27010057info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:11:14Zoai:ri.conicet.gov.ar:11336/274874instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:11:15.14CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Structure of Bit-String Similarity Networks
title The Structure of Bit-String Similarity Networks
spellingShingle The Structure of Bit-String Similarity Networks
Schneider, David Marcelo
BIT-STRING MODELS
SIMILARITY NETWORKS
STRUCTURAL PROPERTIES
NETWORK THEORY
title_short The Structure of Bit-String Similarity Networks
title_full The Structure of Bit-String Similarity Networks
title_fullStr The Structure of Bit-String Similarity Networks
title_full_unstemmed The Structure of Bit-String Similarity Networks
title_sort The Structure of Bit-String Similarity Networks
dc.creator.none.fl_str_mv Schneider, David Marcelo
Zanette, Damian Horacio
author Schneider, David Marcelo
author_facet Schneider, David Marcelo
Zanette, Damian Horacio
author_role author
author2 Zanette, Damian Horacio
author2_role author
dc.subject.none.fl_str_mv BIT-STRING MODELS
SIMILARITY NETWORKS
STRUCTURAL PROPERTIES
NETWORK THEORY
topic BIT-STRING MODELS
SIMILARITY NETWORKS
STRUCTURAL PROPERTIES
NETWORK THEORY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the structural properties of networks formed by random sets of bit strings—namely the ordered arrays of binary variables representing, for instance, genetic information or cultural profiles. Two bit strings are connected by a network link when they are sufficiently similar to each other, i.e., when their Hamming distance is below a certain threshold. Using both analytical and numerical techniques, we determine the degree distribution and the conditions for the existence of a giant component in this kind of network. In addition, we analyze their clustering, assortativity, and mean geodesic distance. We show that these properties combine features specific to random networks with characteristics that derive from the Hamming metrics implicit in the definition of similarity between bit strings.
Fil: Schneider, David Marcelo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Zanette, Damian Horacio. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description We study the structural properties of networks formed by random sets of bit strings—namely the ordered arrays of binary variables representing, for instance, genetic information or cultural profiles. Two bit strings are connected by a network link when they are sufficiently similar to each other, i.e., when their Hamming distance is below a certain threshold. Using both analytical and numerical techniques, we determine the degree distribution and the conditions for the existence of a giant component in this kind of network. In addition, we analyze their clustering, assortativity, and mean geodesic distance. We show that these properties combine features specific to random networks with characteristics that derive from the Hamming metrics implicit in the definition of similarity between bit strings.
publishDate 2025
dc.date.none.fl_str_mv 2025-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/274874
Schneider, David Marcelo; Zanette, Damian Horacio; The Structure of Bit-String Similarity Networks; Molecular Diversity Preservation International; Entropy; 27; 1; 1-2025; 1-13
1099-4300
CONICET Digital
CONICET
url http://hdl.handle.net/11336/274874
identifier_str_mv Schneider, David Marcelo; Zanette, Damian Horacio; The Structure of Bit-String Similarity Networks; Molecular Diversity Preservation International; Entropy; 27; 1; 1-2025; 1-13
1099-4300
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/1/57
info:eu-repo/semantics/altIdentifier/doi/10.3390/e27010057
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852334877647568896
score 12.952241