A rotation‐free shell triangle for the analysis of kinked and branching shells
- Autores
- Flores, Fernando Gabriel; Oñate, Eugenio
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper extends the capabilities of previous BST and EBST rotation-free thin shell elements to the analysis of kinked and branching surfaces. The computation of the curvature tensor is first redefined in terms of the angle change between the normals at the adjacent elements. This allows to deal with arbitrary large angles between adjacent elements and to treat kinked surfaces. A relative stiffness between elements is introduced to consider non-homogeneous surfaces. This idea is latter generalized to deal with branching shells. Several linear and non-linear examples are presented showing that the formulation leads to the correct results.
Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Oñate, Eugenio. No especifíca; - Materia
-
Finite elements
Shells
rotation-free triangle
branching shell - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/241727
Ver los metadatos del registro completo
id |
CONICETDig_5b11f94bbf779c2f3e330c2797da0155 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/241727 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A rotation‐free shell triangle for the analysis of kinked and branching shellsFlores, Fernando GabrielOñate, EugenioFinite elementsShellsrotation-free trianglebranching shellhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2This paper extends the capabilities of previous BST and EBST rotation-free thin shell elements to the analysis of kinked and branching surfaces. The computation of the curvature tensor is first redefined in terms of the angle change between the normals at the adjacent elements. This allows to deal with arbitrary large angles between adjacent elements and to treat kinked surfaces. A relative stiffness between elements is introduced to consider non-homogeneous surfaces. This idea is latter generalized to deal with branching shells. Several linear and non-linear examples are presented showing that the formulation leads to the correct results.Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Oñate, Eugenio. No especifíca;John Wiley & Sons Ltd2006-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241727Flores, Fernando Gabriel; Oñate, Eugenio; A rotation‐free shell triangle for the analysis of kinked and branching shells; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 69; 7; 7-2006; 1521-15510029-5981CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/nme.1823info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:45Zoai:ri.conicet.gov.ar:11336/241727instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:45.759CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A rotation‐free shell triangle for the analysis of kinked and branching shells |
title |
A rotation‐free shell triangle for the analysis of kinked and branching shells |
spellingShingle |
A rotation‐free shell triangle for the analysis of kinked and branching shells Flores, Fernando Gabriel Finite elements Shells rotation-free triangle branching shell |
title_short |
A rotation‐free shell triangle for the analysis of kinked and branching shells |
title_full |
A rotation‐free shell triangle for the analysis of kinked and branching shells |
title_fullStr |
A rotation‐free shell triangle for the analysis of kinked and branching shells |
title_full_unstemmed |
A rotation‐free shell triangle for the analysis of kinked and branching shells |
title_sort |
A rotation‐free shell triangle for the analysis of kinked and branching shells |
dc.creator.none.fl_str_mv |
Flores, Fernando Gabriel Oñate, Eugenio |
author |
Flores, Fernando Gabriel |
author_facet |
Flores, Fernando Gabriel Oñate, Eugenio |
author_role |
author |
author2 |
Oñate, Eugenio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Finite elements Shells rotation-free triangle branching shell |
topic |
Finite elements Shells rotation-free triangle branching shell |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper extends the capabilities of previous BST and EBST rotation-free thin shell elements to the analysis of kinked and branching surfaces. The computation of the curvature tensor is first redefined in terms of the angle change between the normals at the adjacent elements. This allows to deal with arbitrary large angles between adjacent elements and to treat kinked surfaces. A relative stiffness between elements is introduced to consider non-homogeneous surfaces. This idea is latter generalized to deal with branching shells. Several linear and non-linear examples are presented showing that the formulation leads to the correct results. Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Oñate, Eugenio. No especifíca; |
description |
This paper extends the capabilities of previous BST and EBST rotation-free thin shell elements to the analysis of kinked and branching surfaces. The computation of the curvature tensor is first redefined in terms of the angle change between the normals at the adjacent elements. This allows to deal with arbitrary large angles between adjacent elements and to treat kinked surfaces. A relative stiffness between elements is introduced to consider non-homogeneous surfaces. This idea is latter generalized to deal with branching shells. Several linear and non-linear examples are presented showing that the formulation leads to the correct results. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/241727 Flores, Fernando Gabriel; Oñate, Eugenio; A rotation‐free shell triangle for the analysis of kinked and branching shells; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 69; 7; 7-2006; 1521-1551 0029-5981 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/241727 |
identifier_str_mv |
Flores, Fernando Gabriel; Oñate, Eugenio; A rotation‐free shell triangle for the analysis of kinked and branching shells; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 69; 7; 7-2006; 1521-1551 0029-5981 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/nme.1823 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614509947256832 |
score |
13.070432 |