A rotation‐free shell triangle for the analysis of kinked and branching shells

Autores
Flores, Fernando Gabriel; Oñate, Eugenio
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper extends the capabilities of previous BST and EBST rotation-free thin shell elements to the analysis of kinked and branching surfaces. The computation of the curvature tensor is first redefined in terms of the angle change between the normals at the adjacent elements. This allows to deal with arbitrary large angles between adjacent elements and to treat kinked surfaces. A relative stiffness between elements is introduced to consider non-homogeneous surfaces. This idea is latter generalized to deal with branching shells. Several linear and non-linear examples are presented showing that the formulation leads to the correct results.
Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Oñate, Eugenio. No especifíca;
Materia
Finite elements
Shells
rotation-free triangle
branching shell
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241727

id CONICETDig_5b11f94bbf779c2f3e330c2797da0155
oai_identifier_str oai:ri.conicet.gov.ar:11336/241727
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A rotation‐free shell triangle for the analysis of kinked and branching shellsFlores, Fernando GabrielOñate, EugenioFinite elementsShellsrotation-free trianglebranching shellhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2This paper extends the capabilities of previous BST and EBST rotation-free thin shell elements to the analysis of kinked and branching surfaces. The computation of the curvature tensor is first redefined in terms of the angle change between the normals at the adjacent elements. This allows to deal with arbitrary large angles between adjacent elements and to treat kinked surfaces. A relative stiffness between elements is introduced to consider non-homogeneous surfaces. This idea is latter generalized to deal with branching shells. Several linear and non-linear examples are presented showing that the formulation leads to the correct results.Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Oñate, Eugenio. No especifíca;John Wiley & Sons Ltd2006-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241727Flores, Fernando Gabriel; Oñate, Eugenio; A rotation‐free shell triangle for the analysis of kinked and branching shells; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 69; 7; 7-2006; 1521-15510029-5981CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/nme.1823info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:45Zoai:ri.conicet.gov.ar:11336/241727instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:45.759CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A rotation‐free shell triangle for the analysis of kinked and branching shells
title A rotation‐free shell triangle for the analysis of kinked and branching shells
spellingShingle A rotation‐free shell triangle for the analysis of kinked and branching shells
Flores, Fernando Gabriel
Finite elements
Shells
rotation-free triangle
branching shell
title_short A rotation‐free shell triangle for the analysis of kinked and branching shells
title_full A rotation‐free shell triangle for the analysis of kinked and branching shells
title_fullStr A rotation‐free shell triangle for the analysis of kinked and branching shells
title_full_unstemmed A rotation‐free shell triangle for the analysis of kinked and branching shells
title_sort A rotation‐free shell triangle for the analysis of kinked and branching shells
dc.creator.none.fl_str_mv Flores, Fernando Gabriel
Oñate, Eugenio
author Flores, Fernando Gabriel
author_facet Flores, Fernando Gabriel
Oñate, Eugenio
author_role author
author2 Oñate, Eugenio
author2_role author
dc.subject.none.fl_str_mv Finite elements
Shells
rotation-free triangle
branching shell
topic Finite elements
Shells
rotation-free triangle
branching shell
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper extends the capabilities of previous BST and EBST rotation-free thin shell elements to the analysis of kinked and branching surfaces. The computation of the curvature tensor is first redefined in terms of the angle change between the normals at the adjacent elements. This allows to deal with arbitrary large angles between adjacent elements and to treat kinked surfaces. A relative stiffness between elements is introduced to consider non-homogeneous surfaces. This idea is latter generalized to deal with branching shells. Several linear and non-linear examples are presented showing that the formulation leads to the correct results.
Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Oñate, Eugenio. No especifíca;
description This paper extends the capabilities of previous BST and EBST rotation-free thin shell elements to the analysis of kinked and branching surfaces. The computation of the curvature tensor is first redefined in terms of the angle change between the normals at the adjacent elements. This allows to deal with arbitrary large angles between adjacent elements and to treat kinked surfaces. A relative stiffness between elements is introduced to consider non-homogeneous surfaces. This idea is latter generalized to deal with branching shells. Several linear and non-linear examples are presented showing that the formulation leads to the correct results.
publishDate 2006
dc.date.none.fl_str_mv 2006-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241727
Flores, Fernando Gabriel; Oñate, Eugenio; A rotation‐free shell triangle for the analysis of kinked and branching shells; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 69; 7; 7-2006; 1521-1551
0029-5981
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241727
identifier_str_mv Flores, Fernando Gabriel; Oñate, Eugenio; A rotation‐free shell triangle for the analysis of kinked and branching shells; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 69; 7; 7-2006; 1521-1551
0029-5981
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/nme.1823
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614509947256832
score 13.070432