Infinite horizon MPC with non-minimal state space feedback

Autores
González, Alejandro Hernán; Pérez, José; Odloak, Darci
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input–output, state variable feedback pole assignment, International Journal of Control 46 (1987) 1867–1881; C. Wang, P.C. Young, Direct digital control by input–output, state variable feedback: theoretical background, International Journal of Control 47 (1988) 97–109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states.
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Pérez, José. PETROBRAS; Brasil
Fil: Odloak, Darci. University of Sao Paulo; Brasil
Materia
Model Based Control
Infinite Horizon
Output Feedback
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17101

id CONICETDig_5a8259b0f7b0ca4830f677f9e46547b0
oai_identifier_str oai:ri.conicet.gov.ar:11336/17101
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Infinite horizon MPC with non-minimal state space feedbackGonzález, Alejandro HernánPérez, JoséOdloak, DarciModel Based ControlInfinite HorizonOutput Feedbackhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input–output, state variable feedback pole assignment, International Journal of Control 46 (1987) 1867–1881; C. Wang, P.C. Young, Direct digital control by input–output, state variable feedback: theoretical background, International Journal of Control 47 (1988) 97–109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states.Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Pérez, José. PETROBRAS; BrasilFil: Odloak, Darci. University of Sao Paulo; BrasilElsevier2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17101González, Alejandro Hernán; Pérez, José; Odloak, Darci; Infinite horizon MPC with non-minimal state space feedback; Elsevier; Journal Of Process Control; 19; 3; 12-2009; 473-4810959-1524enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2008.06.001info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152408001145info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:58Zoai:ri.conicet.gov.ar:11336/17101instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:59.055CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Infinite horizon MPC with non-minimal state space feedback
title Infinite horizon MPC with non-minimal state space feedback
spellingShingle Infinite horizon MPC with non-minimal state space feedback
González, Alejandro Hernán
Model Based Control
Infinite Horizon
Output Feedback
title_short Infinite horizon MPC with non-minimal state space feedback
title_full Infinite horizon MPC with non-minimal state space feedback
title_fullStr Infinite horizon MPC with non-minimal state space feedback
title_full_unstemmed Infinite horizon MPC with non-minimal state space feedback
title_sort Infinite horizon MPC with non-minimal state space feedback
dc.creator.none.fl_str_mv González, Alejandro Hernán
Pérez, José
Odloak, Darci
author González, Alejandro Hernán
author_facet González, Alejandro Hernán
Pérez, José
Odloak, Darci
author_role author
author2 Pérez, José
Odloak, Darci
author2_role author
author
dc.subject.none.fl_str_mv Model Based Control
Infinite Horizon
Output Feedback
topic Model Based Control
Infinite Horizon
Output Feedback
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input–output, state variable feedback pole assignment, International Journal of Control 46 (1987) 1867–1881; C. Wang, P.C. Young, Direct digital control by input–output, state variable feedback: theoretical background, International Journal of Control 47 (1988) 97–109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states.
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Pérez, José. PETROBRAS; Brasil
Fil: Odloak, Darci. University of Sao Paulo; Brasil
description In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input–output, state variable feedback pole assignment, International Journal of Control 46 (1987) 1867–1881; C. Wang, P.C. Young, Direct digital control by input–output, state variable feedback: theoretical background, International Journal of Control 47 (1988) 97–109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17101
González, Alejandro Hernán; Pérez, José; Odloak, Darci; Infinite horizon MPC with non-minimal state space feedback; Elsevier; Journal Of Process Control; 19; 3; 12-2009; 473-481
0959-1524
url http://hdl.handle.net/11336/17101
identifier_str_mv González, Alejandro Hernán; Pérez, José; Odloak, Darci; Infinite horizon MPC with non-minimal state space feedback; Elsevier; Journal Of Process Control; 19; 3; 12-2009; 473-481
0959-1524
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2008.06.001
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152408001145
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614344418000896
score 13.070432