Infinite horizon MPC with non-minimal state space feedback
- Autores
- González, Alejandro Hernán; Pérez, José; Odloak, Darci
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input–output, state variable feedback pole assignment, International Journal of Control 46 (1987) 1867–1881; C. Wang, P.C. Young, Direct digital control by input–output, state variable feedback: theoretical background, International Journal of Control 47 (1988) 97–109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states.
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Pérez, José. PETROBRAS; Brasil
Fil: Odloak, Darci. University of Sao Paulo; Brasil - Materia
-
Model Based Control
Infinite Horizon
Output Feedback - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17101
Ver los metadatos del registro completo
id |
CONICETDig_5a8259b0f7b0ca4830f677f9e46547b0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17101 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Infinite horizon MPC with non-minimal state space feedbackGonzález, Alejandro HernánPérez, JoséOdloak, DarciModel Based ControlInfinite HorizonOutput Feedbackhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input–output, state variable feedback pole assignment, International Journal of Control 46 (1987) 1867–1881; C. Wang, P.C. Young, Direct digital control by input–output, state variable feedback: theoretical background, International Journal of Control 47 (1988) 97–109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states.Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Pérez, José. PETROBRAS; BrasilFil: Odloak, Darci. University of Sao Paulo; BrasilElsevier2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17101González, Alejandro Hernán; Pérez, José; Odloak, Darci; Infinite horizon MPC with non-minimal state space feedback; Elsevier; Journal Of Process Control; 19; 3; 12-2009; 473-4810959-1524enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2008.06.001info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152408001145info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:58Zoai:ri.conicet.gov.ar:11336/17101instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:59.055CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Infinite horizon MPC with non-minimal state space feedback |
title |
Infinite horizon MPC with non-minimal state space feedback |
spellingShingle |
Infinite horizon MPC with non-minimal state space feedback González, Alejandro Hernán Model Based Control Infinite Horizon Output Feedback |
title_short |
Infinite horizon MPC with non-minimal state space feedback |
title_full |
Infinite horizon MPC with non-minimal state space feedback |
title_fullStr |
Infinite horizon MPC with non-minimal state space feedback |
title_full_unstemmed |
Infinite horizon MPC with non-minimal state space feedback |
title_sort |
Infinite horizon MPC with non-minimal state space feedback |
dc.creator.none.fl_str_mv |
González, Alejandro Hernán Pérez, José Odloak, Darci |
author |
González, Alejandro Hernán |
author_facet |
González, Alejandro Hernán Pérez, José Odloak, Darci |
author_role |
author |
author2 |
Pérez, José Odloak, Darci |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Model Based Control Infinite Horizon Output Feedback |
topic |
Model Based Control Infinite Horizon Output Feedback |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input–output, state variable feedback pole assignment, International Journal of Control 46 (1987) 1867–1881; C. Wang, P.C. Young, Direct digital control by input–output, state variable feedback: theoretical background, International Journal of Control 47 (1988) 97–109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states. Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Pérez, José. PETROBRAS; Brasil Fil: Odloak, Darci. University of Sao Paulo; Brasil |
description |
In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input–output, state variable feedback pole assignment, International Journal of Control 46 (1987) 1867–1881; C. Wang, P.C. Young, Direct digital control by input–output, state variable feedback: theoretical background, International Journal of Control 47 (1988) 97–109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17101 González, Alejandro Hernán; Pérez, José; Odloak, Darci; Infinite horizon MPC with non-minimal state space feedback; Elsevier; Journal Of Process Control; 19; 3; 12-2009; 473-481 0959-1524 |
url |
http://hdl.handle.net/11336/17101 |
identifier_str_mv |
González, Alejandro Hernán; Pérez, José; Odloak, Darci; Infinite horizon MPC with non-minimal state space feedback; Elsevier; Journal Of Process Control; 19; 3; 12-2009; 473-481 0959-1524 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2008.06.001 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152408001145 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614344418000896 |
score |
13.070432 |