Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds
- Autores
- Zhang, Kewei; Orlando, Antonio; Crooks, Elaine
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We apply compensated convex transforms to define a multiscale Hausdorff stable method to extract intersections between smooth compact manifolds represented by their characteristic functions or as point clouds embedded in Rn. We prove extraction results on intersections of smooth compact manifolds and for points of high curvature. As a result of the Hausdorff?Lipschitz continuity of our transforms, we show that our method is stable against dense sampling of smooth manifolds with noise. Examples of explicitly calculated prototype models for some simple cases are presented, which are also used in the proofs of our main results. Numerical experiments in two- and three-dimensional space, and applications to geometric objects are also shown.
Fil: Zhang, Kewei. The University of Nottingham; Reino Unido
Fil: Orlando, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras ; Argentina
Fil: Crooks, Elaine. Swansea University; Reino Unido - Materia
-
Compensated Convex Transforms
Hausdorff Stability
Stable Ridges
Random Samples
Valleys
Edges
Corners Transforms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/45546
Ver los metadatos del registro completo
id |
CONICETDig_5a03929b4b44141da6ecb1580ac03986 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/45546 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Compensated convexity and Hausdorff stable extraction of intersections for smooth manifoldsZhang, KeweiOrlando, AntonioCrooks, ElaineCompensated Convex TransformsHausdorff StabilityStable RidgesRandom SamplesValleysEdgesCorners Transformshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We apply compensated convex transforms to define a multiscale Hausdorff stable method to extract intersections between smooth compact manifolds represented by their characteristic functions or as point clouds embedded in Rn. We prove extraction results on intersections of smooth compact manifolds and for points of high curvature. As a result of the Hausdorff?Lipschitz continuity of our transforms, we show that our method is stable against dense sampling of smooth manifolds with noise. Examples of explicitly calculated prototype models for some simple cases are presented, which are also used in the proofs of our main results. Numerical experiments in two- and three-dimensional space, and applications to geometric objects are also shown.Fil: Zhang, Kewei. The University of Nottingham; Reino UnidoFil: Orlando, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras ; ArgentinaFil: Crooks, Elaine. Swansea University; Reino UnidoWorld Scientific2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/45546Zhang, Kewei; Orlando, Antonio; Crooks, Elaine; Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds; World Scientific; Mathematical Models And Methods In Applied Sciences; 25; 05; 5-2015; 839-8730218-2025CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202515500207info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218202515500207info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:10:27Zoai:ri.conicet.gov.ar:11336/45546instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:10:28.014CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds |
title |
Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds |
spellingShingle |
Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds Zhang, Kewei Compensated Convex Transforms Hausdorff Stability Stable Ridges Random Samples Valleys Edges Corners Transforms |
title_short |
Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds |
title_full |
Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds |
title_fullStr |
Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds |
title_full_unstemmed |
Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds |
title_sort |
Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds |
dc.creator.none.fl_str_mv |
Zhang, Kewei Orlando, Antonio Crooks, Elaine |
author |
Zhang, Kewei |
author_facet |
Zhang, Kewei Orlando, Antonio Crooks, Elaine |
author_role |
author |
author2 |
Orlando, Antonio Crooks, Elaine |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Compensated Convex Transforms Hausdorff Stability Stable Ridges Random Samples Valleys Edges Corners Transforms |
topic |
Compensated Convex Transforms Hausdorff Stability Stable Ridges Random Samples Valleys Edges Corners Transforms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We apply compensated convex transforms to define a multiscale Hausdorff stable method to extract intersections between smooth compact manifolds represented by their characteristic functions or as point clouds embedded in Rn. We prove extraction results on intersections of smooth compact manifolds and for points of high curvature. As a result of the Hausdorff?Lipschitz continuity of our transforms, we show that our method is stable against dense sampling of smooth manifolds with noise. Examples of explicitly calculated prototype models for some simple cases are presented, which are also used in the proofs of our main results. Numerical experiments in two- and three-dimensional space, and applications to geometric objects are also shown. Fil: Zhang, Kewei. The University of Nottingham; Reino Unido Fil: Orlando, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras ; Argentina Fil: Crooks, Elaine. Swansea University; Reino Unido |
description |
We apply compensated convex transforms to define a multiscale Hausdorff stable method to extract intersections between smooth compact manifolds represented by their characteristic functions or as point clouds embedded in Rn. We prove extraction results on intersections of smooth compact manifolds and for points of high curvature. As a result of the Hausdorff?Lipschitz continuity of our transforms, we show that our method is stable against dense sampling of smooth manifolds with noise. Examples of explicitly calculated prototype models for some simple cases are presented, which are also used in the proofs of our main results. Numerical experiments in two- and three-dimensional space, and applications to geometric objects are also shown. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/45546 Zhang, Kewei; Orlando, Antonio; Crooks, Elaine; Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds; World Scientific; Mathematical Models And Methods In Applied Sciences; 25; 05; 5-2015; 839-873 0218-2025 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/45546 |
identifier_str_mv |
Zhang, Kewei; Orlando, Antonio; Crooks, Elaine; Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds; World Scientific; Mathematical Models And Methods In Applied Sciences; 25; 05; 5-2015; 839-873 0218-2025 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202515500207 info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218202515500207 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782490580090880 |
score |
12.982451 |