The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b

Autores
Hazra, Gopal; Vidotto, Aline A.; Carolan, Stephen; Villarreal D'angelo, Carolina Susana; Manchester, Ward
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
High-energy stellar irradiation can photoevaporate planetary atmospheres, which can be observed in spectroscopic transits of hydrogen lines. For the exoplanet HD189733b, multiple observations in the Ly α line have shown that atmospheric evaporation is variable, going from undetected to enhanced evaporation in a 1.5-yr interval. Coincidentally or not, when HD189733b was observed to be evaporating, a stellar flare had just occurred 8 h prior to the observation. This led to the question of whether this temporal variation in evaporation occurred due to the flare, an unseen associated coronal mass ejection (CME), or even the simultaneous effect of both. In this work, we investigate the impact of flares (radiation), winds, and CMEs (particles) on the atmosphere of HD189733b using three-dimensional radiation hydrodynamic simulations that self-consistently include stellar photon heating. We study four cases: first, the quiescent phase including stellar wind; secondly, a flare; thirdly, a CME; and fourthly, a flare that is followed by a CME. Compared to the quiescent case, we find that the flare alone increases the evaporation rate by only 25 per cent, while the CME leads to a factor of 4 increments. We calculate Ly α synthetic transits and find that the flare alone cannot explain the observed high blueshifted velocities seen in the Ly α. The CME, however, leads to an increase in the velocity of escaping atmospheres, enhancing the blueshifted transit depth. While the effects of CMEs show a promising potential, our models are not able to fully explain the blueshifted transit depths, indicating that they might require additional physical mechanisms.
Fil: Hazra, Gopal. Leiden University; Países Bajos
Fil: Vidotto, Aline A.. Leiden University; Países Bajos
Fil: Carolan, Stephen. Trinity College Dublin; Irlanda
Fil: Villarreal D'angelo, Carolina Susana. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Manchester, Ward. University of Michigan; Estados Unidos
Materia
PLANETS AND SATELLITES: ATMOSPHERE
PLANET–STAR INTERACTIONS
STARS: CORONAL MASS EJECTIONS
STARS: FLARES
STARS: HD189733A
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/216390

id CONICETDig_5938a351724d51710d51fc67de7eba80
oai_identifier_str oai:ri.conicet.gov.ar:11336/216390
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733bHazra, GopalVidotto, Aline A.Carolan, StephenVillarreal D'angelo, Carolina SusanaManchester, WardPLANETS AND SATELLITES: ATMOSPHEREPLANET–STAR INTERACTIONSSTARS: CORONAL MASS EJECTIONSSTARS: FLARESSTARS: HD189733Ahttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1High-energy stellar irradiation can photoevaporate planetary atmospheres, which can be observed in spectroscopic transits of hydrogen lines. For the exoplanet HD189733b, multiple observations in the Ly α line have shown that atmospheric evaporation is variable, going from undetected to enhanced evaporation in a 1.5-yr interval. Coincidentally or not, when HD189733b was observed to be evaporating, a stellar flare had just occurred 8 h prior to the observation. This led to the question of whether this temporal variation in evaporation occurred due to the flare, an unseen associated coronal mass ejection (CME), or even the simultaneous effect of both. In this work, we investigate the impact of flares (radiation), winds, and CMEs (particles) on the atmosphere of HD189733b using three-dimensional radiation hydrodynamic simulations that self-consistently include stellar photon heating. We study four cases: first, the quiescent phase including stellar wind; secondly, a flare; thirdly, a CME; and fourthly, a flare that is followed by a CME. Compared to the quiescent case, we find that the flare alone increases the evaporation rate by only 25 per cent, while the CME leads to a factor of 4 increments. We calculate Ly α synthetic transits and find that the flare alone cannot explain the observed high blueshifted velocities seen in the Ly α. The CME, however, leads to an increase in the velocity of escaping atmospheres, enhancing the blueshifted transit depth. While the effects of CMEs show a promising potential, our models are not able to fully explain the blueshifted transit depths, indicating that they might require additional physical mechanisms.Fil: Hazra, Gopal. Leiden University; Países BajosFil: Vidotto, Aline A.. Leiden University; Países BajosFil: Carolan, Stephen. Trinity College Dublin; IrlandaFil: Villarreal D'angelo, Carolina Susana. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Manchester, Ward. University of Michigan; Estados UnidosWiley Blackwell Publishing, Inc2022-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216390Hazra, Gopal; Vidotto, Aline A.; Carolan, Stephen; Villarreal D'angelo, Carolina Susana; Manchester, Ward; The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 509; 4; 2-2022; 5858-58710035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stab3271info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:50Zoai:ri.conicet.gov.ar:11336/216390instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:50.388CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b
title The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b
spellingShingle The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b
Hazra, Gopal
PLANETS AND SATELLITES: ATMOSPHERE
PLANET–STAR INTERACTIONS
STARS: CORONAL MASS EJECTIONS
STARS: FLARES
STARS: HD189733A
title_short The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b
title_full The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b
title_fullStr The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b
title_full_unstemmed The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b
title_sort The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b
dc.creator.none.fl_str_mv Hazra, Gopal
Vidotto, Aline A.
Carolan, Stephen
Villarreal D'angelo, Carolina Susana
Manchester, Ward
author Hazra, Gopal
author_facet Hazra, Gopal
Vidotto, Aline A.
Carolan, Stephen
Villarreal D'angelo, Carolina Susana
Manchester, Ward
author_role author
author2 Vidotto, Aline A.
Carolan, Stephen
Villarreal D'angelo, Carolina Susana
Manchester, Ward
author2_role author
author
author
author
dc.subject.none.fl_str_mv PLANETS AND SATELLITES: ATMOSPHERE
PLANET–STAR INTERACTIONS
STARS: CORONAL MASS EJECTIONS
STARS: FLARES
STARS: HD189733A
topic PLANETS AND SATELLITES: ATMOSPHERE
PLANET–STAR INTERACTIONS
STARS: CORONAL MASS EJECTIONS
STARS: FLARES
STARS: HD189733A
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv High-energy stellar irradiation can photoevaporate planetary atmospheres, which can be observed in spectroscopic transits of hydrogen lines. For the exoplanet HD189733b, multiple observations in the Ly α line have shown that atmospheric evaporation is variable, going from undetected to enhanced evaporation in a 1.5-yr interval. Coincidentally or not, when HD189733b was observed to be evaporating, a stellar flare had just occurred 8 h prior to the observation. This led to the question of whether this temporal variation in evaporation occurred due to the flare, an unseen associated coronal mass ejection (CME), or even the simultaneous effect of both. In this work, we investigate the impact of flares (radiation), winds, and CMEs (particles) on the atmosphere of HD189733b using three-dimensional radiation hydrodynamic simulations that self-consistently include stellar photon heating. We study four cases: first, the quiescent phase including stellar wind; secondly, a flare; thirdly, a CME; and fourthly, a flare that is followed by a CME. Compared to the quiescent case, we find that the flare alone increases the evaporation rate by only 25 per cent, while the CME leads to a factor of 4 increments. We calculate Ly α synthetic transits and find that the flare alone cannot explain the observed high blueshifted velocities seen in the Ly α. The CME, however, leads to an increase in the velocity of escaping atmospheres, enhancing the blueshifted transit depth. While the effects of CMEs show a promising potential, our models are not able to fully explain the blueshifted transit depths, indicating that they might require additional physical mechanisms.
Fil: Hazra, Gopal. Leiden University; Países Bajos
Fil: Vidotto, Aline A.. Leiden University; Países Bajos
Fil: Carolan, Stephen. Trinity College Dublin; Irlanda
Fil: Villarreal D'angelo, Carolina Susana. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Manchester, Ward. University of Michigan; Estados Unidos
description High-energy stellar irradiation can photoevaporate planetary atmospheres, which can be observed in spectroscopic transits of hydrogen lines. For the exoplanet HD189733b, multiple observations in the Ly α line have shown that atmospheric evaporation is variable, going from undetected to enhanced evaporation in a 1.5-yr interval. Coincidentally or not, when HD189733b was observed to be evaporating, a stellar flare had just occurred 8 h prior to the observation. This led to the question of whether this temporal variation in evaporation occurred due to the flare, an unseen associated coronal mass ejection (CME), or even the simultaneous effect of both. In this work, we investigate the impact of flares (radiation), winds, and CMEs (particles) on the atmosphere of HD189733b using three-dimensional radiation hydrodynamic simulations that self-consistently include stellar photon heating. We study four cases: first, the quiescent phase including stellar wind; secondly, a flare; thirdly, a CME; and fourthly, a flare that is followed by a CME. Compared to the quiescent case, we find that the flare alone increases the evaporation rate by only 25 per cent, while the CME leads to a factor of 4 increments. We calculate Ly α synthetic transits and find that the flare alone cannot explain the observed high blueshifted velocities seen in the Ly α. The CME, however, leads to an increase in the velocity of escaping atmospheres, enhancing the blueshifted transit depth. While the effects of CMEs show a promising potential, our models are not able to fully explain the blueshifted transit depths, indicating that they might require additional physical mechanisms.
publishDate 2022
dc.date.none.fl_str_mv 2022-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/216390
Hazra, Gopal; Vidotto, Aline A.; Carolan, Stephen; Villarreal D'angelo, Carolina Susana; Manchester, Ward; The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 509; 4; 2-2022; 5858-5871
0035-8711
CONICET Digital
CONICET
url http://hdl.handle.net/11336/216390
identifier_str_mv Hazra, Gopal; Vidotto, Aline A.; Carolan, Stephen; Villarreal D'angelo, Carolina Susana; Manchester, Ward; The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 509; 4; 2-2022; 5858-5871
0035-8711
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stab3271
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614001358536704
score 13.070432