Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands...

Autores
Mohseni, Naimeh; Bahram, Morteza; Olivieri, Alejandro Cesar
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In order to achieve the second-order advantage, second-order data per sample is usually required, e.g., kinetic-spectrophotometric data. In this study, instead of monitoring the time evolution of spectra (and collecting the kinetic-spectrophotometric data) replicate spectra are used to build a virtual second order data. This data matrix (replicate mode × λ) is rank deficient. Augmentation of these data with standard addition data [or standard sample(s)] will break the rank deficiency, making the quantification of the analyte of interest possible. The MCR-ALS algorithm was applied for the resolution and quantitation of the analyte in both simulated and experimental data sets. In order to evaluate the rotational ambiguity in the retrieved solutions, the MCR-BANDS algorithm was employed. It has been shown that the reliability of the quantitative results significantly depends on the amount of spectral overlap in the spectral region of occurrence of the compound of interest and the remaining constituent(s).
Fil: Mohseni, Naimeh. Urmia University. Faculty of Chemistry. Department of Analytical Chemistry; Irán
Fil: Bahram, Morteza. Urmia University. Faculty of Chemistry. Department of Analytical Chemistry; Irán
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; Argentina
Materia
Química Analítica
Quimiometría
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5989

id CONICETDig_58af30689fd4ccb88c0988be97a10de0
oai_identifier_str oai:ri.conicet.gov.ar:11336/5989
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of resultsMohseni, NaimehBahram, MortezaOlivieri, Alejandro CesarQuímica AnalíticaQuimiometríahttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In order to achieve the second-order advantage, second-order data per sample is usually required, e.g., kinetic-spectrophotometric data. In this study, instead of monitoring the time evolution of spectra (and collecting the kinetic-spectrophotometric data) replicate spectra are used to build a virtual second order data. This data matrix (replicate mode × λ) is rank deficient. Augmentation of these data with standard addition data [or standard sample(s)] will break the rank deficiency, making the quantification of the analyte of interest possible. The MCR-ALS algorithm was applied for the resolution and quantitation of the analyte in both simulated and experimental data sets. In order to evaluate the rotational ambiguity in the retrieved solutions, the MCR-BANDS algorithm was employed. It has been shown that the reliability of the quantitative results significantly depends on the amount of spectral overlap in the spectral region of occurrence of the compound of interest and the remaining constituent(s).Fil: Mohseni, Naimeh. Urmia University. Faculty of Chemistry. Department of Analytical Chemistry; IránFil: Bahram, Morteza. Urmia University. Faculty of Chemistry. Department of Analytical Chemistry; IránFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaElsevier2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5989Mohseni, Naimeh; Bahram, Morteza; Olivieri, Alejandro Cesar; Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results; Elsevier; Spectrochimica Acta Part A: Molecular And Biomolecular Spectroscopy; 122; 3-2014; 721-7301386-1425enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1386142513013905info:eu-repo/semantics/altIdentifier/doi/10.1016/j.saa.2013.11.073info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:41Zoai:ri.conicet.gov.ar:11336/5989instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:42.62CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results
title Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results
spellingShingle Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results
Mohseni, Naimeh
Química Analítica
Quimiometría
title_short Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results
title_full Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results
title_fullStr Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results
title_full_unstemmed Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results
title_sort Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results
dc.creator.none.fl_str_mv Mohseni, Naimeh
Bahram, Morteza
Olivieri, Alejandro Cesar
author Mohseni, Naimeh
author_facet Mohseni, Naimeh
Bahram, Morteza
Olivieri, Alejandro Cesar
author_role author
author2 Bahram, Morteza
Olivieri, Alejandro Cesar
author2_role author
author
dc.subject.none.fl_str_mv Química Analítica
Quimiometría
topic Química Analítica
Quimiometría
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In order to achieve the second-order advantage, second-order data per sample is usually required, e.g., kinetic-spectrophotometric data. In this study, instead of monitoring the time evolution of spectra (and collecting the kinetic-spectrophotometric data) replicate spectra are used to build a virtual second order data. This data matrix (replicate mode × λ) is rank deficient. Augmentation of these data with standard addition data [or standard sample(s)] will break the rank deficiency, making the quantification of the analyte of interest possible. The MCR-ALS algorithm was applied for the resolution and quantitation of the analyte in both simulated and experimental data sets. In order to evaluate the rotational ambiguity in the retrieved solutions, the MCR-BANDS algorithm was employed. It has been shown that the reliability of the quantitative results significantly depends on the amount of spectral overlap in the spectral region of occurrence of the compound of interest and the remaining constituent(s).
Fil: Mohseni, Naimeh. Urmia University. Faculty of Chemistry. Department of Analytical Chemistry; Irán
Fil: Bahram, Morteza. Urmia University. Faculty of Chemistry. Department of Analytical Chemistry; Irán
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; Argentina
description In order to achieve the second-order advantage, second-order data per sample is usually required, e.g., kinetic-spectrophotometric data. In this study, instead of monitoring the time evolution of spectra (and collecting the kinetic-spectrophotometric data) replicate spectra are used to build a virtual second order data. This data matrix (replicate mode × λ) is rank deficient. Augmentation of these data with standard addition data [or standard sample(s)] will break the rank deficiency, making the quantification of the analyte of interest possible. The MCR-ALS algorithm was applied for the resolution and quantitation of the analyte in both simulated and experimental data sets. In order to evaluate the rotational ambiguity in the retrieved solutions, the MCR-BANDS algorithm was employed. It has been shown that the reliability of the quantitative results significantly depends on the amount of spectral overlap in the spectral region of occurrence of the compound of interest and the remaining constituent(s).
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5989
Mohseni, Naimeh; Bahram, Morteza; Olivieri, Alejandro Cesar; Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results; Elsevier; Spectrochimica Acta Part A: Molecular And Biomolecular Spectroscopy; 122; 3-2014; 721-730
1386-1425
url http://hdl.handle.net/11336/5989
identifier_str_mv Mohseni, Naimeh; Bahram, Morteza; Olivieri, Alejandro Cesar; Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results; Elsevier; Spectrochimica Acta Part A: Molecular And Biomolecular Spectroscopy; 122; 3-2014; 721-730
1386-1425
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1386142513013905
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.saa.2013.11.073
info:eu-repo/semantics/altIdentifier/doi/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268617299722240
score 13.13397