The MeSsI (merging systems identification) algorithm and catalogue
- Autores
- De Los Rios, Martín; Dominguez, Mariano; Paz, Dante Javier; Merchan, Manuel Enrique
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Merging galaxy systems provide observational evidence of the existence of dark matter and constraints on its properties. Therefore, statistically uniform samples of merging systems would be a powerful tool for several studies. In this paper, we present a new methodology for the identification of merging systems and the results of its application to galaxy redshift surveys.We use as a starting point amock catalogue of galaxy systems, identified using friendsof- friends algorithms, that have experienced a major merger, as indicated by its merger tree. By applying machine learning techniques in this training sample, and using several features computed from the observable properties of galaxy members, it is possible to select galaxy groups that have a high probability of having experienced a major merger. Next, we apply a mixture of Gaussian techniques on galaxy members in order to reconstruct the properties of the haloes involved in such mergers. This methodology provides a highly reliable sample of merging systems with low contamination and precisely recovered properties. We apply our techniques to samples of galaxy systems obtained from the Sloan Digital Sky Survey Data Release 7, theWide-Field Nearby Galaxy-Cluster Survey (WINGS) and the Hectospec Cluster Survey (HeCS). Our results recover previously known merging systems and provide several new candidates. We present their measured properties and discuss future analysis on current and forthcoming samples.
Fil: De Los Rios, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Dominguez, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Paz, Dante Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Merchan, Manuel Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina - Materia
-
DARK MATTER
GALAXIES: CLUSTERS: GENERAL
GALAXIES: KINEMATICS AND DYNAMICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/183601
Ver los metadatos del registro completo
id |
CONICETDig_58adb947767a6214a191ee6684fa98f1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/183601 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The MeSsI (merging systems identification) algorithm and catalogueDe Los Rios, MartínDominguez, MarianoPaz, Dante JavierMerchan, Manuel EnriqueDARK MATTERGALAXIES: CLUSTERS: GENERALGALAXIES: KINEMATICS AND DYNAMICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Merging galaxy systems provide observational evidence of the existence of dark matter and constraints on its properties. Therefore, statistically uniform samples of merging systems would be a powerful tool for several studies. In this paper, we present a new methodology for the identification of merging systems and the results of its application to galaxy redshift surveys.We use as a starting point amock catalogue of galaxy systems, identified using friendsof- friends algorithms, that have experienced a major merger, as indicated by its merger tree. By applying machine learning techniques in this training sample, and using several features computed from the observable properties of galaxy members, it is possible to select galaxy groups that have a high probability of having experienced a major merger. Next, we apply a mixture of Gaussian techniques on galaxy members in order to reconstruct the properties of the haloes involved in such mergers. This methodology provides a highly reliable sample of merging systems with low contamination and precisely recovered properties. We apply our techniques to samples of galaxy systems obtained from the Sloan Digital Sky Survey Data Release 7, theWide-Field Nearby Galaxy-Cluster Survey (WINGS) and the Hectospec Cluster Survey (HeCS). Our results recover previously known merging systems and provide several new candidates. We present their measured properties and discuss future analysis on current and forthcoming samples.Fil: De Los Rios, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Dominguez, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Paz, Dante Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Merchan, Manuel Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaWiley Blackwell Publishing, Inc2016-03-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/183601De Los Rios, Martín; Dominguez, Mariano; Paz, Dante Javier; Merchan, Manuel Enrique; The MeSsI (merging systems identification) algorithm and catalogue; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 458; 1; 11-3-2016; 226-2320035-87111365-2966CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stw215info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:13Zoai:ri.conicet.gov.ar:11336/183601instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:13.646CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The MeSsI (merging systems identification) algorithm and catalogue |
title |
The MeSsI (merging systems identification) algorithm and catalogue |
spellingShingle |
The MeSsI (merging systems identification) algorithm and catalogue De Los Rios, Martín DARK MATTER GALAXIES: CLUSTERS: GENERAL GALAXIES: KINEMATICS AND DYNAMICS |
title_short |
The MeSsI (merging systems identification) algorithm and catalogue |
title_full |
The MeSsI (merging systems identification) algorithm and catalogue |
title_fullStr |
The MeSsI (merging systems identification) algorithm and catalogue |
title_full_unstemmed |
The MeSsI (merging systems identification) algorithm and catalogue |
title_sort |
The MeSsI (merging systems identification) algorithm and catalogue |
dc.creator.none.fl_str_mv |
De Los Rios, Martín Dominguez, Mariano Paz, Dante Javier Merchan, Manuel Enrique |
author |
De Los Rios, Martín |
author_facet |
De Los Rios, Martín Dominguez, Mariano Paz, Dante Javier Merchan, Manuel Enrique |
author_role |
author |
author2 |
Dominguez, Mariano Paz, Dante Javier Merchan, Manuel Enrique |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DARK MATTER GALAXIES: CLUSTERS: GENERAL GALAXIES: KINEMATICS AND DYNAMICS |
topic |
DARK MATTER GALAXIES: CLUSTERS: GENERAL GALAXIES: KINEMATICS AND DYNAMICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Merging galaxy systems provide observational evidence of the existence of dark matter and constraints on its properties. Therefore, statistically uniform samples of merging systems would be a powerful tool for several studies. In this paper, we present a new methodology for the identification of merging systems and the results of its application to galaxy redshift surveys.We use as a starting point amock catalogue of galaxy systems, identified using friendsof- friends algorithms, that have experienced a major merger, as indicated by its merger tree. By applying machine learning techniques in this training sample, and using several features computed from the observable properties of galaxy members, it is possible to select galaxy groups that have a high probability of having experienced a major merger. Next, we apply a mixture of Gaussian techniques on galaxy members in order to reconstruct the properties of the haloes involved in such mergers. This methodology provides a highly reliable sample of merging systems with low contamination and precisely recovered properties. We apply our techniques to samples of galaxy systems obtained from the Sloan Digital Sky Survey Data Release 7, theWide-Field Nearby Galaxy-Cluster Survey (WINGS) and the Hectospec Cluster Survey (HeCS). Our results recover previously known merging systems and provide several new candidates. We present their measured properties and discuss future analysis on current and forthcoming samples. Fil: De Los Rios, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Dominguez, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Paz, Dante Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Merchan, Manuel Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina |
description |
Merging galaxy systems provide observational evidence of the existence of dark matter and constraints on its properties. Therefore, statistically uniform samples of merging systems would be a powerful tool for several studies. In this paper, we present a new methodology for the identification of merging systems and the results of its application to galaxy redshift surveys.We use as a starting point amock catalogue of galaxy systems, identified using friendsof- friends algorithms, that have experienced a major merger, as indicated by its merger tree. By applying machine learning techniques in this training sample, and using several features computed from the observable properties of galaxy members, it is possible to select galaxy groups that have a high probability of having experienced a major merger. Next, we apply a mixture of Gaussian techniques on galaxy members in order to reconstruct the properties of the haloes involved in such mergers. This methodology provides a highly reliable sample of merging systems with low contamination and precisely recovered properties. We apply our techniques to samples of galaxy systems obtained from the Sloan Digital Sky Survey Data Release 7, theWide-Field Nearby Galaxy-Cluster Survey (WINGS) and the Hectospec Cluster Survey (HeCS). Our results recover previously known merging systems and provide several new candidates. We present their measured properties and discuss future analysis on current and forthcoming samples. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/183601 De Los Rios, Martín; Dominguez, Mariano; Paz, Dante Javier; Merchan, Manuel Enrique; The MeSsI (merging systems identification) algorithm and catalogue; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 458; 1; 11-3-2016; 226-232 0035-8711 1365-2966 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/183601 |
identifier_str_mv |
De Los Rios, Martín; Dominguez, Mariano; Paz, Dante Javier; Merchan, Manuel Enrique; The MeSsI (merging systems identification) algorithm and catalogue; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 458; 1; 11-3-2016; 226-232 0035-8711 1365-2966 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stw215 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613803718737920 |
score |
13.070432 |