Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading

Autores
Ledesma Bazan, Paula Sabrina; Cascardo, Florencia Laura; Bizzotto, Juan Antonio; Olszevicki, Santiago; Vazquez, Elba Susana; Gueron, Geraldine; Cotignola, Javier Hernan
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Prostate cancer is a highly heterogeneous disease; therefore, estimating patient prognosis accurately is challenging due to the lack of biomarkers with sufficient specificity and sensitivity. One of the current challenges lies in integrating genomic and transcriptomic data with clinico-pathological features and in incorporating their application in everyday clinical practice. Therefore, we aimed to model a risk score and nomogram containing long non-coding RNA (lncRNA) expression and clinico-pathological data to better predict the probability of prostate cancer progression. We performed bioinformatics analyses to identify lncRNAs differentially expressed across various prostate cancer stages and associated with progression-free survival. This information was further integrated into a prognostic risk score and nomogram containing transcriptomic and clinico-pathological features to estimate the risk of disease progression. We used RNA-seq data from 5 datasets from public repositories (total n = 178) comprising different stages of prostate cancer: pre-treatment primary prostate adenocarcinomas, post-treatment tumors and metastatic castration resistant prostate cancer. We found 30 lncRNAs with consistent differential expression in all comparisons made using two R-based packages. Multivariate progression-free survival analysis including the ISUP group as covariate, revealed that 7/30 lncRNAs were significantly associated with time-to-progression. Next, we combined the expression of these 7 lncRNAs into a multi-lncRNA score and dichotomized the patients into low- or high-score. Patients with a high-score showed a 4-fold risk of disease progression (HR = 4.30, 95 %CI = 2.66–6.97, p = 3.1e-9). Furthermore, we modelled a combined risk-score containing information on the multi-lncRNA score and ISUP group. We found that patients with a high-risk score had nearly 8-fold risk of progression (HR = 7.65, 95 %CI = 4.05–14.44, p = 3.4e-10). Finally, we created and validated a nomogram to help uro-oncologists to better predict patient's risk of progression at 3- and 5-years post-diagnosis. In conclusion, the integration of lncRNA expression data and clinico-pathological features of prostate tumors into predictive models might aid in tailored disease risk assessment and treatment for patients with prostate cancer.
Fil: Ledesma Bazan, Paula Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Cascardo, Florencia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Bizzotto, Juan Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; Argentina
Fil: Olszevicki, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Vazquez, Elba Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Gueron, Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Cotignola, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Materia
PROSTATE CANCER
LNC-RNA
TRANSCRIPTOMICS
BIOMARKER
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265602

id CONICETDig_57bded7ea675e9571404bd4fb70fdee1
oai_identifier_str oai:ri.conicet.gov.ar:11336/265602
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP gradingLedesma Bazan, Paula SabrinaCascardo, Florencia LauraBizzotto, Juan AntonioOlszevicki, SantiagoVazquez, Elba SusanaGueron, GeraldineCotignola, Javier HernanPROSTATE CANCERLNC-RNATRANSCRIPTOMICSBIOMARKERhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Prostate cancer is a highly heterogeneous disease; therefore, estimating patient prognosis accurately is challenging due to the lack of biomarkers with sufficient specificity and sensitivity. One of the current challenges lies in integrating genomic and transcriptomic data with clinico-pathological features and in incorporating their application in everyday clinical practice. Therefore, we aimed to model a risk score and nomogram containing long non-coding RNA (lncRNA) expression and clinico-pathological data to better predict the probability of prostate cancer progression. We performed bioinformatics analyses to identify lncRNAs differentially expressed across various prostate cancer stages and associated with progression-free survival. This information was further integrated into a prognostic risk score and nomogram containing transcriptomic and clinico-pathological features to estimate the risk of disease progression. We used RNA-seq data from 5 datasets from public repositories (total n = 178) comprising different stages of prostate cancer: pre-treatment primary prostate adenocarcinomas, post-treatment tumors and metastatic castration resistant prostate cancer. We found 30 lncRNAs with consistent differential expression in all comparisons made using two R-based packages. Multivariate progression-free survival analysis including the ISUP group as covariate, revealed that 7/30 lncRNAs were significantly associated with time-to-progression. Next, we combined the expression of these 7 lncRNAs into a multi-lncRNA score and dichotomized the patients into low- or high-score. Patients with a high-score showed a 4-fold risk of disease progression (HR = 4.30, 95 %CI = 2.66–6.97, p = 3.1e-9). Furthermore, we modelled a combined risk-score containing information on the multi-lncRNA score and ISUP group. We found that patients with a high-risk score had nearly 8-fold risk of progression (HR = 7.65, 95 %CI = 4.05–14.44, p = 3.4e-10). Finally, we created and validated a nomogram to help uro-oncologists to better predict patient's risk of progression at 3- and 5-years post-diagnosis. In conclusion, the integration of lncRNA expression data and clinico-pathological features of prostate tumors into predictive models might aid in tailored disease risk assessment and treatment for patients with prostate cancer.Fil: Ledesma Bazan, Paula Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Cascardo, Florencia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Bizzotto, Juan Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; ArgentinaFil: Olszevicki, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Vazquez, Elba Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Gueron, Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Cotignola, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaElsevier2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265602Ledesma Bazan, Paula Sabrina; Cascardo, Florencia Laura; Bizzotto, Juan Antonio; Olszevicki, Santiago; Vazquez, Elba Susana; et al.; Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading; Elsevier; Non-coding RNA Research; 9; 2; 6-2024; 612-6232468-0540CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2468054024000143info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ncrna.2024.01.014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-08T12:47:32Zoai:ri.conicet.gov.ar:11336/265602instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-08 12:47:33.131CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading
title Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading
spellingShingle Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading
Ledesma Bazan, Paula Sabrina
PROSTATE CANCER
LNC-RNA
TRANSCRIPTOMICS
BIOMARKER
title_short Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading
title_full Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading
title_fullStr Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading
title_full_unstemmed Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading
title_sort Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading
dc.creator.none.fl_str_mv Ledesma Bazan, Paula Sabrina
Cascardo, Florencia Laura
Bizzotto, Juan Antonio
Olszevicki, Santiago
Vazquez, Elba Susana
Gueron, Geraldine
Cotignola, Javier Hernan
author Ledesma Bazan, Paula Sabrina
author_facet Ledesma Bazan, Paula Sabrina
Cascardo, Florencia Laura
Bizzotto, Juan Antonio
Olszevicki, Santiago
Vazquez, Elba Susana
Gueron, Geraldine
Cotignola, Javier Hernan
author_role author
author2 Cascardo, Florencia Laura
Bizzotto, Juan Antonio
Olszevicki, Santiago
Vazquez, Elba Susana
Gueron, Geraldine
Cotignola, Javier Hernan
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv PROSTATE CANCER
LNC-RNA
TRANSCRIPTOMICS
BIOMARKER
topic PROSTATE CANCER
LNC-RNA
TRANSCRIPTOMICS
BIOMARKER
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Prostate cancer is a highly heterogeneous disease; therefore, estimating patient prognosis accurately is challenging due to the lack of biomarkers with sufficient specificity and sensitivity. One of the current challenges lies in integrating genomic and transcriptomic data with clinico-pathological features and in incorporating their application in everyday clinical practice. Therefore, we aimed to model a risk score and nomogram containing long non-coding RNA (lncRNA) expression and clinico-pathological data to better predict the probability of prostate cancer progression. We performed bioinformatics analyses to identify lncRNAs differentially expressed across various prostate cancer stages and associated with progression-free survival. This information was further integrated into a prognostic risk score and nomogram containing transcriptomic and clinico-pathological features to estimate the risk of disease progression. We used RNA-seq data from 5 datasets from public repositories (total n = 178) comprising different stages of prostate cancer: pre-treatment primary prostate adenocarcinomas, post-treatment tumors and metastatic castration resistant prostate cancer. We found 30 lncRNAs with consistent differential expression in all comparisons made using two R-based packages. Multivariate progression-free survival analysis including the ISUP group as covariate, revealed that 7/30 lncRNAs were significantly associated with time-to-progression. Next, we combined the expression of these 7 lncRNAs into a multi-lncRNA score and dichotomized the patients into low- or high-score. Patients with a high-score showed a 4-fold risk of disease progression (HR = 4.30, 95 %CI = 2.66–6.97, p = 3.1e-9). Furthermore, we modelled a combined risk-score containing information on the multi-lncRNA score and ISUP group. We found that patients with a high-risk score had nearly 8-fold risk of progression (HR = 7.65, 95 %CI = 4.05–14.44, p = 3.4e-10). Finally, we created and validated a nomogram to help uro-oncologists to better predict patient's risk of progression at 3- and 5-years post-diagnosis. In conclusion, the integration of lncRNA expression data and clinico-pathological features of prostate tumors into predictive models might aid in tailored disease risk assessment and treatment for patients with prostate cancer.
Fil: Ledesma Bazan, Paula Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Cascardo, Florencia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Bizzotto, Juan Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; Argentina
Fil: Olszevicki, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Vazquez, Elba Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Gueron, Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Cotignola, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
description Prostate cancer is a highly heterogeneous disease; therefore, estimating patient prognosis accurately is challenging due to the lack of biomarkers with sufficient specificity and sensitivity. One of the current challenges lies in integrating genomic and transcriptomic data with clinico-pathological features and in incorporating their application in everyday clinical practice. Therefore, we aimed to model a risk score and nomogram containing long non-coding RNA (lncRNA) expression and clinico-pathological data to better predict the probability of prostate cancer progression. We performed bioinformatics analyses to identify lncRNAs differentially expressed across various prostate cancer stages and associated with progression-free survival. This information was further integrated into a prognostic risk score and nomogram containing transcriptomic and clinico-pathological features to estimate the risk of disease progression. We used RNA-seq data from 5 datasets from public repositories (total n = 178) comprising different stages of prostate cancer: pre-treatment primary prostate adenocarcinomas, post-treatment tumors and metastatic castration resistant prostate cancer. We found 30 lncRNAs with consistent differential expression in all comparisons made using two R-based packages. Multivariate progression-free survival analysis including the ISUP group as covariate, revealed that 7/30 lncRNAs were significantly associated with time-to-progression. Next, we combined the expression of these 7 lncRNAs into a multi-lncRNA score and dichotomized the patients into low- or high-score. Patients with a high-score showed a 4-fold risk of disease progression (HR = 4.30, 95 %CI = 2.66–6.97, p = 3.1e-9). Furthermore, we modelled a combined risk-score containing information on the multi-lncRNA score and ISUP group. We found that patients with a high-risk score had nearly 8-fold risk of progression (HR = 7.65, 95 %CI = 4.05–14.44, p = 3.4e-10). Finally, we created and validated a nomogram to help uro-oncologists to better predict patient's risk of progression at 3- and 5-years post-diagnosis. In conclusion, the integration of lncRNA expression data and clinico-pathological features of prostate tumors into predictive models might aid in tailored disease risk assessment and treatment for patients with prostate cancer.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265602
Ledesma Bazan, Paula Sabrina; Cascardo, Florencia Laura; Bizzotto, Juan Antonio; Olszevicki, Santiago; Vazquez, Elba Susana; et al.; Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading; Elsevier; Non-coding RNA Research; 9; 2; 6-2024; 612-623
2468-0540
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265602
identifier_str_mv Ledesma Bazan, Paula Sabrina; Cascardo, Florencia Laura; Bizzotto, Juan Antonio; Olszevicki, Santiago; Vazquez, Elba Susana; et al.; Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading; Elsevier; Non-coding RNA Research; 9; 2; 6-2024; 612-623
2468-0540
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2468054024000143
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ncrna.2024.01.014
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1853775036380348416
score 13.25844