Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms

Autores
Russo, Jorge Guillermo; Silva, Guillermo Ariel
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Abstract: We exactly compute the partition function for U(2)k × U(2)− k ABJM theory on S3 deformed by mass m and Fayet-Iliopoulos parameter ζ. For k = 1, 2, the partition function has an infinite number of Lee-Yang zeros. For general k, in the decompactification limit the theory exhibits a quantum (first-order) phase transition at m = 2ζ.
Fil: Russo, Jorge Guillermo. Universidad de Barcelona; España. Institució Catalana de Recerca i Estudis Avancats; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Abdus Salam International Centre for Theoretical Physics; Italia
Materia
ADS-CFT CORRESPONDENCE
CHERN-SIMONS THEORIES
MATRIX MODELS
SUPERSYMMETRIC GAUGE THEORY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54209

id CONICETDig_5770a09f4f3d69f9aaa2a6337aece9d5
oai_identifier_str oai:ri.conicet.gov.ar:11336/54209
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos termsRusso, Jorge GuillermoSilva, Guillermo ArielADS-CFT CORRESPONDENCECHERN-SIMONS THEORIESMATRIX MODELSSUPERSYMMETRIC GAUGE THEORYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Abstract: We exactly compute the partition function for U(2)k × U(2)− k ABJM theory on S3 deformed by mass m and Fayet-Iliopoulos parameter ζ. For k = 1, 2, the partition function has an infinite number of Lee-Yang zeros. For general k, in the decompactification limit the theory exhibits a quantum (first-order) phase transition at m = 2ζ.Fil: Russo, Jorge Guillermo. Universidad de Barcelona; España. Institució Catalana de Recerca i Estudis Avancats; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Abdus Salam International Centre for Theoretical Physics; ItaliaSpringer2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54209Russo, Jorge Guillermo; Silva, Guillermo Ariel; Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms; Springer; Journal of High Energy Physics; 2015; 12; 12-2015; 1-111126-67081029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1510.02957info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP12(2015)092info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP12(2015)092info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:33Zoai:ri.conicet.gov.ar:11336/54209instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:34.259CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms
title Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms
spellingShingle Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms
Russo, Jorge Guillermo
ADS-CFT CORRESPONDENCE
CHERN-SIMONS THEORIES
MATRIX MODELS
SUPERSYMMETRIC GAUGE THEORY
title_short Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms
title_full Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms
title_fullStr Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms
title_full_unstemmed Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms
title_sort Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms
dc.creator.none.fl_str_mv Russo, Jorge Guillermo
Silva, Guillermo Ariel
author Russo, Jorge Guillermo
author_facet Russo, Jorge Guillermo
Silva, Guillermo Ariel
author_role author
author2 Silva, Guillermo Ariel
author2_role author
dc.subject.none.fl_str_mv ADS-CFT CORRESPONDENCE
CHERN-SIMONS THEORIES
MATRIX MODELS
SUPERSYMMETRIC GAUGE THEORY
topic ADS-CFT CORRESPONDENCE
CHERN-SIMONS THEORIES
MATRIX MODELS
SUPERSYMMETRIC GAUGE THEORY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Abstract: We exactly compute the partition function for U(2)k × U(2)− k ABJM theory on S3 deformed by mass m and Fayet-Iliopoulos parameter ζ. For k = 1, 2, the partition function has an infinite number of Lee-Yang zeros. For general k, in the decompactification limit the theory exhibits a quantum (first-order) phase transition at m = 2ζ.
Fil: Russo, Jorge Guillermo. Universidad de Barcelona; España. Institució Catalana de Recerca i Estudis Avancats; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Abdus Salam International Centre for Theoretical Physics; Italia
description Abstract: We exactly compute the partition function for U(2)k × U(2)− k ABJM theory on S3 deformed by mass m and Fayet-Iliopoulos parameter ζ. For k = 1, 2, the partition function has an infinite number of Lee-Yang zeros. For general k, in the decompactification limit the theory exhibits a quantum (first-order) phase transition at m = 2ζ.
publishDate 2015
dc.date.none.fl_str_mv 2015-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54209
Russo, Jorge Guillermo; Silva, Guillermo Ariel; Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms; Springer; Journal of High Energy Physics; 2015; 12; 12-2015; 1-11
1126-6708
1029-8479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54209
identifier_str_mv Russo, Jorge Guillermo; Silva, Guillermo Ariel; Exact partition function in U(2) × U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms; Springer; Journal of High Energy Physics; 2015; 12; 12-2015; 1-11
1126-6708
1029-8479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1510.02957
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP12(2015)092
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP12(2015)092
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269233698832384
score 13.13397