Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
- Autores
- Wang, Feng; Graetz, Jason; Moreno, Mario Sergio Jesus; Ma, Chao; Wu, Lijun; Volkov, Vyacheslav; Zhu, Yimei
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Direct mapping of the lithium spatial distribution and the chemical state providescritical information on structure-correlated lithium transport in electrode materials for lithiumbatteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses anextreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.
Fil: Wang, Feng. No especifíca;
Fil: Graetz, Jason. No especifíca;
Fil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Ma, Chao. No especifíca;
Fil: Wu, Lijun. No especifíca;
Fil: Volkov, Vyacheslav. No especifíca;
Fil: Zhu, Yimei. No especifíca; - Materia
-
lithium batteries
electron energy loss spectroscopy
transmission electron microscopy
graphite
ab initio calculations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/268233
Ver los metadatos del registro completo
id |
CONICETDig_5707b2a06dfb34224cf63c3fd5cd53fd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/268233 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss SpectroscopyWang, FengGraetz, JasonMoreno, Mario Sergio JesusMa, ChaoWu, LijunVolkov, VyacheslavZhu, Yimeilithium batterieselectron energy loss spectroscopytransmission electron microscopygraphiteab initio calculationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Direct mapping of the lithium spatial distribution and the chemical state providescritical information on structure-correlated lithium transport in electrode materials for lithiumbatteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses anextreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.Fil: Wang, Feng. No especifíca;Fil: Graetz, Jason. No especifíca;Fil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Ma, Chao. No especifíca;Fil: Wu, Lijun. No especifíca;Fil: Volkov, Vyacheslav. No especifíca;Fil: Zhu, Yimei. No especifíca;American Chemical Society2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/268233Wang, Feng; Graetz, Jason; Moreno, Mario Sergio Jesus; Ma, Chao; Wu, Lijun; et al.; Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy; American Chemical Society; ACS Nano; 5; 2; 1-2011; 1190-11971936-0851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/nn1028168info:eu-repo/semantics/altIdentifier/doi/10.1021/nn1028168info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:55Zoai:ri.conicet.gov.ar:11336/268233instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:55.745CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy |
title |
Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy |
spellingShingle |
Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy Wang, Feng lithium batteries electron energy loss spectroscopy transmission electron microscopy graphite ab initio calculations |
title_short |
Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy |
title_full |
Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy |
title_fullStr |
Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy |
title_full_unstemmed |
Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy |
title_sort |
Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy |
dc.creator.none.fl_str_mv |
Wang, Feng Graetz, Jason Moreno, Mario Sergio Jesus Ma, Chao Wu, Lijun Volkov, Vyacheslav Zhu, Yimei |
author |
Wang, Feng |
author_facet |
Wang, Feng Graetz, Jason Moreno, Mario Sergio Jesus Ma, Chao Wu, Lijun Volkov, Vyacheslav Zhu, Yimei |
author_role |
author |
author2 |
Graetz, Jason Moreno, Mario Sergio Jesus Ma, Chao Wu, Lijun Volkov, Vyacheslav Zhu, Yimei |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
lithium batteries electron energy loss spectroscopy transmission electron microscopy graphite ab initio calculations |
topic |
lithium batteries electron energy loss spectroscopy transmission electron microscopy graphite ab initio calculations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Direct mapping of the lithium spatial distribution and the chemical state providescritical information on structure-correlated lithium transport in electrode materials for lithiumbatteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses anextreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer. Fil: Wang, Feng. No especifíca; Fil: Graetz, Jason. No especifíca; Fil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Ma, Chao. No especifíca; Fil: Wu, Lijun. No especifíca; Fil: Volkov, Vyacheslav. No especifíca; Fil: Zhu, Yimei. No especifíca; |
description |
Direct mapping of the lithium spatial distribution and the chemical state providescritical information on structure-correlated lithium transport in electrode materials for lithiumbatteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses anextreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/268233 Wang, Feng; Graetz, Jason; Moreno, Mario Sergio Jesus; Ma, Chao; Wu, Lijun; et al.; Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy; American Chemical Society; ACS Nano; 5; 2; 1-2011; 1190-1197 1936-0851 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/268233 |
identifier_str_mv |
Wang, Feng; Graetz, Jason; Moreno, Mario Sergio Jesus; Ma, Chao; Wu, Lijun; et al.; Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy; American Chemical Society; ACS Nano; 5; 2; 1-2011; 1190-1197 1936-0851 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/nn1028168 info:eu-repo/semantics/altIdentifier/doi/10.1021/nn1028168 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614194408718336 |
score |
13.070432 |