Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy

Autores
Wang, Feng; Graetz, Jason; Moreno, Mario Sergio Jesus; Ma, Chao; Wu, Lijun; Volkov, Vyacheslav; Zhu, Yimei
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Direct mapping of the lithium spatial distribution and the chemical state providescritical information on structure-correlated lithium transport in electrode materials for lithiumbatteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses anextreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.
Fil: Wang, Feng. No especifíca;
Fil: Graetz, Jason. No especifíca;
Fil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Ma, Chao. No especifíca;
Fil: Wu, Lijun. No especifíca;
Fil: Volkov, Vyacheslav. No especifíca;
Fil: Zhu, Yimei. No especifíca;
Materia
lithium batteries
electron energy loss spectroscopy
transmission electron microscopy
graphite
ab initio calculations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/268233

id CONICETDig_5707b2a06dfb34224cf63c3fd5cd53fd
oai_identifier_str oai:ri.conicet.gov.ar:11336/268233
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss SpectroscopyWang, FengGraetz, JasonMoreno, Mario Sergio JesusMa, ChaoWu, LijunVolkov, VyacheslavZhu, Yimeilithium batterieselectron energy loss spectroscopytransmission electron microscopygraphiteab initio calculationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Direct mapping of the lithium spatial distribution and the chemical state providescritical information on structure-correlated lithium transport in electrode materials for lithiumbatteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses anextreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.Fil: Wang, Feng. No especifíca;Fil: Graetz, Jason. No especifíca;Fil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Ma, Chao. No especifíca;Fil: Wu, Lijun. No especifíca;Fil: Volkov, Vyacheslav. No especifíca;Fil: Zhu, Yimei. No especifíca;American Chemical Society2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/268233Wang, Feng; Graetz, Jason; Moreno, Mario Sergio Jesus; Ma, Chao; Wu, Lijun; et al.; Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy; American Chemical Society; ACS Nano; 5; 2; 1-2011; 1190-11971936-0851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/nn1028168info:eu-repo/semantics/altIdentifier/doi/10.1021/nn1028168info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:55Zoai:ri.conicet.gov.ar:11336/268233instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:55.745CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
title Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
spellingShingle Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
Wang, Feng
lithium batteries
electron energy loss spectroscopy
transmission electron microscopy
graphite
ab initio calculations
title_short Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
title_full Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
title_fullStr Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
title_full_unstemmed Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
title_sort Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
dc.creator.none.fl_str_mv Wang, Feng
Graetz, Jason
Moreno, Mario Sergio Jesus
Ma, Chao
Wu, Lijun
Volkov, Vyacheslav
Zhu, Yimei
author Wang, Feng
author_facet Wang, Feng
Graetz, Jason
Moreno, Mario Sergio Jesus
Ma, Chao
Wu, Lijun
Volkov, Vyacheslav
Zhu, Yimei
author_role author
author2 Graetz, Jason
Moreno, Mario Sergio Jesus
Ma, Chao
Wu, Lijun
Volkov, Vyacheslav
Zhu, Yimei
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv lithium batteries
electron energy loss spectroscopy
transmission electron microscopy
graphite
ab initio calculations
topic lithium batteries
electron energy loss spectroscopy
transmission electron microscopy
graphite
ab initio calculations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Direct mapping of the lithium spatial distribution and the chemical state providescritical information on structure-correlated lithium transport in electrode materials for lithiumbatteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses anextreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.
Fil: Wang, Feng. No especifíca;
Fil: Graetz, Jason. No especifíca;
Fil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Ma, Chao. No especifíca;
Fil: Wu, Lijun. No especifíca;
Fil: Volkov, Vyacheslav. No especifíca;
Fil: Zhu, Yimei. No especifíca;
description Direct mapping of the lithium spatial distribution and the chemical state providescritical information on structure-correlated lithium transport in electrode materials for lithiumbatteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses anextreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.
publishDate 2011
dc.date.none.fl_str_mv 2011-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/268233
Wang, Feng; Graetz, Jason; Moreno, Mario Sergio Jesus; Ma, Chao; Wu, Lijun; et al.; Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy; American Chemical Society; ACS Nano; 5; 2; 1-2011; 1190-1197
1936-0851
CONICET Digital
CONICET
url http://hdl.handle.net/11336/268233
identifier_str_mv Wang, Feng; Graetz, Jason; Moreno, Mario Sergio Jesus; Ma, Chao; Wu, Lijun; et al.; Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy; American Chemical Society; ACS Nano; 5; 2; 1-2011; 1190-1197
1936-0851
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/nn1028168
info:eu-repo/semantics/altIdentifier/doi/10.1021/nn1028168
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614194408718336
score 13.070432