Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidy

Autores
Rodriguez, Pablo Emanuel del Valle; Ameida, E.; Costa, L.; Amorin, B. S.; Guignard, M. S.; Carvalho Sobrinho, J.; Sader, Mariela Analía; Lopez, S.; Mota, L.; Loureiro, J.; Leitch, Ilia J.; Rodrigues Souza, Luiz Gustavo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Genome size (GS) displays a broad variation across land plants. Although it is considered to be influenced by selection pressures depending on different environmental conditions and life-history strategies, the underlying drivers of GS variation across lineages remain elusive. Latitude gradients of GS tend to show contrasting patterns among different plant groups, sampling, and statistical approaches. A recent analysis suggested that niche conservatism in dry environments may be associated with bigger GS increase at higher latitudes. However, it is not clear how the extreme ecological conditions in these dry environments might play a role in driving GS evolution. We investigated GS evolution in the dry-climate specialized family Cactaceae, aiming to explore the relationship between GS and latitude as well as a range of cytogenetic and climatic variables. We used flow cytometry to generate original GS data for Melocactus and Pereskia species which together with GSs compiled from previous publications, resulted in data for 344 species belonging in 63 genera, including representatives in all the main Cactaceae lineages. 1C-values varied 14.31- fold, with high variability of GS was observed at the genus level for representatives of the Cactoideae II and Opuntioideae clades. Our comparative analysis revealed that these clades contain most of the Cactaceae polyploids that have been identified. Molecular clock analysis revealed that the Opuntoideae polyploid lineages are older than those in Cactoideae II, which is correlated with low monoploid GS (1Cx) values in the Opuntioideae paleopolyploids. A positive correlation was observed between 1C-values and latitude, with a tendency for species with larger genomes to occur more frequently at higher latitudes, associated with higher levels of polyploidy (up to 22x) in temperate regions. In contrast, the 1Cx vs. latitude relationship showed the complete opposite result, with a decrease in monoploid GS at higher latitudes, indicating that in the temperate regions the polyploids (mainly of Opuntioideae) have smaller amounts of DNA per monoploid chromosome set. Surprisingly, correlations between tested environmental variables and GS in the Cactaceae seem to be, in general, low. We believe that endoreduplication, such as in the epidermis, can enable diploid plants to physiologically act as a polyploid in certain tissues, masking the correlations between GS and temperature/ precipitation traits. Our data suggest that polyploidy (associated with processes such as gene duplication, asexual reproduction, nucleotype effects, etc.), has played a role in contributing to the geographic distribution and diversification of Cactaceae lineages.
Fil: Rodriguez, Pablo Emanuel del Valle. Universidade Federal de Pernambuco; Brasil. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Geología Basica y Aplicada. Cátedra de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Ameida, E.. Universidade Federal de Pernambuco; Brasil
Fil: Costa, L.. Universidade Federal de Pernambuco; Brasil
Fil: Amorin, B. S.. Museu da Amazonia; Brasil
Fil: Guignard, M. S.. Royal Botanic Gardens; Reino Unido
Fil: Carvalho Sobrinho, J.. Universidad Federal Rural Pernambuco; Brasil
Fil: Sader, Mariela Analía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Fitopatología y Fisiología Vegetal; Argentina. Universidade Federal de Pernambuco; Brasil
Fil: Lopez, S.. Universidad de Coimbra; Portugal
Fil: Mota, L.. Universidad de Coimbra; Portugal
Fil: Loureiro, J.. Universidad de Coimbra; Portugal
Fil: Leitch, Ilia J.. Royal Botanic Gardens; Reino Unido
Fil: Rodrigues Souza, Luiz Gustavo. Universidade Federal de Pernambuco; Brasil
II Meeting of Systematics, Biogeography, and Evolution: The Research of Biodiversity and the Diversity of Researchers
Estados Unidos
SBE Meeting 2021's Organizing Committe
Materia
Cactaceae
Flow cytometry
Paleopolyploids
1C-values
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/218134

id CONICETDig_56f8e9f2c6ea2d2b49d717d17f0c9e62
oai_identifier_str oai:ri.conicet.gov.ar:11336/218134
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidyRodriguez, Pablo Emanuel del ValleAmeida, E.Costa, L.Amorin, B. S.Guignard, M. S.Carvalho Sobrinho, J.Sader, Mariela AnalíaLopez, S.Mota, L.Loureiro, J.Leitch, Ilia J.Rodrigues Souza, Luiz GustavoCactaceaeFlow cytometryPaleopolyploids1C-valueshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Genome size (GS) displays a broad variation across land plants. Although it is considered to be influenced by selection pressures depending on different environmental conditions and life-history strategies, the underlying drivers of GS variation across lineages remain elusive. Latitude gradients of GS tend to show contrasting patterns among different plant groups, sampling, and statistical approaches. A recent analysis suggested that niche conservatism in dry environments may be associated with bigger GS increase at higher latitudes. However, it is not clear how the extreme ecological conditions in these dry environments might play a role in driving GS evolution. We investigated GS evolution in the dry-climate specialized family Cactaceae, aiming to explore the relationship between GS and latitude as well as a range of cytogenetic and climatic variables. We used flow cytometry to generate original GS data for Melocactus and Pereskia species which together with GSs compiled from previous publications, resulted in data for 344 species belonging in 63 genera, including representatives in all the main Cactaceae lineages. 1C-values varied 14.31- fold, with high variability of GS was observed at the genus level for representatives of the Cactoideae II and Opuntioideae clades. Our comparative analysis revealed that these clades contain most of the Cactaceae polyploids that have been identified. Molecular clock analysis revealed that the Opuntoideae polyploid lineages are older than those in Cactoideae II, which is correlated with low monoploid GS (1Cx) values in the Opuntioideae paleopolyploids. A positive correlation was observed between 1C-values and latitude, with a tendency for species with larger genomes to occur more frequently at higher latitudes, associated with higher levels of polyploidy (up to 22x) in temperate regions. In contrast, the 1Cx vs. latitude relationship showed the complete opposite result, with a decrease in monoploid GS at higher latitudes, indicating that in the temperate regions the polyploids (mainly of Opuntioideae) have smaller amounts of DNA per monoploid chromosome set. Surprisingly, correlations between tested environmental variables and GS in the Cactaceae seem to be, in general, low. We believe that endoreduplication, such as in the epidermis, can enable diploid plants to physiologically act as a polyploid in certain tissues, masking the correlations between GS and temperature/ precipitation traits. Our data suggest that polyploidy (associated with processes such as gene duplication, asexual reproduction, nucleotype effects, etc.), has played a role in contributing to the geographic distribution and diversification of Cactaceae lineages.Fil: Rodriguez, Pablo Emanuel del Valle. Universidade Federal de Pernambuco; Brasil. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Geología Basica y Aplicada. Cátedra de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Ameida, E.. Universidade Federal de Pernambuco; BrasilFil: Costa, L.. Universidade Federal de Pernambuco; BrasilFil: Amorin, B. S.. Museu da Amazonia; BrasilFil: Guignard, M. S.. Royal Botanic Gardens; Reino UnidoFil: Carvalho Sobrinho, J.. Universidad Federal Rural Pernambuco; BrasilFil: Sader, Mariela Analía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Fitopatología y Fisiología Vegetal; Argentina. Universidade Federal de Pernambuco; BrasilFil: Lopez, S.. Universidad de Coimbra; PortugalFil: Mota, L.. Universidad de Coimbra; PortugalFil: Loureiro, J.. Universidad de Coimbra; PortugalFil: Leitch, Ilia J.. Royal Botanic Gardens; Reino UnidoFil: Rodrigues Souza, Luiz Gustavo. Universidade Federal de Pernambuco; BrasilII Meeting of Systematics, Biogeography, and Evolution: The Research of Biodiversity and the Diversity of ResearchersEstados UnidosSBE Meeting 2021's Organizing CommitteSBE Meeting 2021's Organizing Committe2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectEncuentroBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/218134Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidy; II Meeting of Systematics, Biogeography, and Evolution: The Research of Biodiversity and the Diversity of Researchers; Estados Unidos; 2021; 94-94CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5281/zenodo.5109989info:eu-repo/semantics/altIdentifier/url/https://zenodo.org/records/5109989Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:09Zoai:ri.conicet.gov.ar:11336/218134instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:09.631CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidy
title Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidy
spellingShingle Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidy
Rodriguez, Pablo Emanuel del Valle
Cactaceae
Flow cytometry
Paleopolyploids
1C-values
title_short Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidy
title_full Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidy
title_fullStr Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidy
title_full_unstemmed Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidy
title_sort Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidy
dc.creator.none.fl_str_mv Rodriguez, Pablo Emanuel del Valle
Ameida, E.
Costa, L.
Amorin, B. S.
Guignard, M. S.
Carvalho Sobrinho, J.
Sader, Mariela Analía
Lopez, S.
Mota, L.
Loureiro, J.
Leitch, Ilia J.
Rodrigues Souza, Luiz Gustavo
author Rodriguez, Pablo Emanuel del Valle
author_facet Rodriguez, Pablo Emanuel del Valle
Ameida, E.
Costa, L.
Amorin, B. S.
Guignard, M. S.
Carvalho Sobrinho, J.
Sader, Mariela Analía
Lopez, S.
Mota, L.
Loureiro, J.
Leitch, Ilia J.
Rodrigues Souza, Luiz Gustavo
author_role author
author2 Ameida, E.
Costa, L.
Amorin, B. S.
Guignard, M. S.
Carvalho Sobrinho, J.
Sader, Mariela Analía
Lopez, S.
Mota, L.
Loureiro, J.
Leitch, Ilia J.
Rodrigues Souza, Luiz Gustavo
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Cactaceae
Flow cytometry
Paleopolyploids
1C-values
topic Cactaceae
Flow cytometry
Paleopolyploids
1C-values
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Genome size (GS) displays a broad variation across land plants. Although it is considered to be influenced by selection pressures depending on different environmental conditions and life-history strategies, the underlying drivers of GS variation across lineages remain elusive. Latitude gradients of GS tend to show contrasting patterns among different plant groups, sampling, and statistical approaches. A recent analysis suggested that niche conservatism in dry environments may be associated with bigger GS increase at higher latitudes. However, it is not clear how the extreme ecological conditions in these dry environments might play a role in driving GS evolution. We investigated GS evolution in the dry-climate specialized family Cactaceae, aiming to explore the relationship between GS and latitude as well as a range of cytogenetic and climatic variables. We used flow cytometry to generate original GS data for Melocactus and Pereskia species which together with GSs compiled from previous publications, resulted in data for 344 species belonging in 63 genera, including representatives in all the main Cactaceae lineages. 1C-values varied 14.31- fold, with high variability of GS was observed at the genus level for representatives of the Cactoideae II and Opuntioideae clades. Our comparative analysis revealed that these clades contain most of the Cactaceae polyploids that have been identified. Molecular clock analysis revealed that the Opuntoideae polyploid lineages are older than those in Cactoideae II, which is correlated with low monoploid GS (1Cx) values in the Opuntioideae paleopolyploids. A positive correlation was observed between 1C-values and latitude, with a tendency for species with larger genomes to occur more frequently at higher latitudes, associated with higher levels of polyploidy (up to 22x) in temperate regions. In contrast, the 1Cx vs. latitude relationship showed the complete opposite result, with a decrease in monoploid GS at higher latitudes, indicating that in the temperate regions the polyploids (mainly of Opuntioideae) have smaller amounts of DNA per monoploid chromosome set. Surprisingly, correlations between tested environmental variables and GS in the Cactaceae seem to be, in general, low. We believe that endoreduplication, such as in the epidermis, can enable diploid plants to physiologically act as a polyploid in certain tissues, masking the correlations between GS and temperature/ precipitation traits. Our data suggest that polyploidy (associated with processes such as gene duplication, asexual reproduction, nucleotype effects, etc.), has played a role in contributing to the geographic distribution and diversification of Cactaceae lineages.
Fil: Rodriguez, Pablo Emanuel del Valle. Universidade Federal de Pernambuco; Brasil. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Geología Basica y Aplicada. Cátedra de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Ameida, E.. Universidade Federal de Pernambuco; Brasil
Fil: Costa, L.. Universidade Federal de Pernambuco; Brasil
Fil: Amorin, B. S.. Museu da Amazonia; Brasil
Fil: Guignard, M. S.. Royal Botanic Gardens; Reino Unido
Fil: Carvalho Sobrinho, J.. Universidad Federal Rural Pernambuco; Brasil
Fil: Sader, Mariela Analía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Fitopatología y Fisiología Vegetal; Argentina. Universidade Federal de Pernambuco; Brasil
Fil: Lopez, S.. Universidad de Coimbra; Portugal
Fil: Mota, L.. Universidad de Coimbra; Portugal
Fil: Loureiro, J.. Universidad de Coimbra; Portugal
Fil: Leitch, Ilia J.. Royal Botanic Gardens; Reino Unido
Fil: Rodrigues Souza, Luiz Gustavo. Universidade Federal de Pernambuco; Brasil
II Meeting of Systematics, Biogeography, and Evolution: The Research of Biodiversity and the Diversity of Researchers
Estados Unidos
SBE Meeting 2021's Organizing Committe
description Genome size (GS) displays a broad variation across land plants. Although it is considered to be influenced by selection pressures depending on different environmental conditions and life-history strategies, the underlying drivers of GS variation across lineages remain elusive. Latitude gradients of GS tend to show contrasting patterns among different plant groups, sampling, and statistical approaches. A recent analysis suggested that niche conservatism in dry environments may be associated with bigger GS increase at higher latitudes. However, it is not clear how the extreme ecological conditions in these dry environments might play a role in driving GS evolution. We investigated GS evolution in the dry-climate specialized family Cactaceae, aiming to explore the relationship between GS and latitude as well as a range of cytogenetic and climatic variables. We used flow cytometry to generate original GS data for Melocactus and Pereskia species which together with GSs compiled from previous publications, resulted in data for 344 species belonging in 63 genera, including representatives in all the main Cactaceae lineages. 1C-values varied 14.31- fold, with high variability of GS was observed at the genus level for representatives of the Cactoideae II and Opuntioideae clades. Our comparative analysis revealed that these clades contain most of the Cactaceae polyploids that have been identified. Molecular clock analysis revealed that the Opuntoideae polyploid lineages are older than those in Cactoideae II, which is correlated with low monoploid GS (1Cx) values in the Opuntioideae paleopolyploids. A positive correlation was observed between 1C-values and latitude, with a tendency for species with larger genomes to occur more frequently at higher latitudes, associated with higher levels of polyploidy (up to 22x) in temperate regions. In contrast, the 1Cx vs. latitude relationship showed the complete opposite result, with a decrease in monoploid GS at higher latitudes, indicating that in the temperate regions the polyploids (mainly of Opuntioideae) have smaller amounts of DNA per monoploid chromosome set. Surprisingly, correlations between tested environmental variables and GS in the Cactaceae seem to be, in general, low. We believe that endoreduplication, such as in the epidermis, can enable diploid plants to physiologically act as a polyploid in certain tissues, masking the correlations between GS and temperature/ precipitation traits. Our data suggest that polyploidy (associated with processes such as gene duplication, asexual reproduction, nucleotype effects, etc.), has played a role in contributing to the geographic distribution and diversification of Cactaceae lineages.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Encuentro
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/218134
Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidy; II Meeting of Systematics, Biogeography, and Evolution: The Research of Biodiversity and the Diversity of Researchers; Estados Unidos; 2021; 94-94
CONICET Digital
CONICET
url http://hdl.handle.net/11336/218134
identifier_str_mv Why tropical plants can have small genomes? Genome size evolution in Cactaceae is shaped by geographically structured polyploidy; II Meeting of Systematics, Biogeography, and Evolution: The Research of Biodiversity and the Diversity of Researchers; Estados Unidos; 2021; 94-94
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.5281/zenodo.5109989
info:eu-repo/semantics/altIdentifier/url/https://zenodo.org/records/5109989
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/vnd.openxmlformats-officedocument.wordprocessingml.document
application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv SBE Meeting 2021's Organizing Committe
publisher.none.fl_str_mv SBE Meeting 2021's Organizing Committe
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082703544287232
score 13.22299