Effect of particle size on copper removal by layered double hydroxides

Autores
Rojas Delgado, Ricardo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Layered double hydroxides are increasingly studied as heavy metal scavengers but the effect of particle size in their removal behavior has not been explored yet. Here, these aspects were studied in three solids with similar structure and composition but different in size and morphology. Nano-sized LDHs were synthesized by a coprecipitation method with separate nucleation and aging steps and compared to a micro-sized LDH. Proton and Cu2+ uptake were studied using both kinetics and isotherms, which were fitted using different models. Decreasing particle size caused an increasing Mg2+ leaching in neutral and basic media and an increased dissolution speed in acid media, both of them due to the larger exposed surface of smaller particles. Depending on the Cu2+ concentration and LDH buffering capacity, Cu2+ removal was produced by Cu(OH)2 precipitation at the particle surface or by isomorphic substitution of Mg2+ ions at the octahedral sites of LDH layers (diadochy). The uptake rate of the latter was controlled by the intraparticle diffusion of Mg2+ ions and, consequently, it was quite independent of the particle size. On the other hand, the uptake capacity decreased with increasing particle size due to the site availability diminution with increasing diffusion path, which led to a decreasing volume of the layer available for Cu2+ uptake for increasing particle size values.
Fil: Rojas Delgado, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Materia
Diadochy
Heavy Metal Removal
Isotherms
Kinetics
Surface Reactions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54161

id CONICETDig_55b36bbd434d157058a133f0fea4bcec
oai_identifier_str oai:ri.conicet.gov.ar:11336/54161
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of particle size on copper removal by layered double hydroxidesRojas Delgado, RicardoDiadochyHeavy Metal RemovalIsothermsKineticsSurface Reactionshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Layered double hydroxides are increasingly studied as heavy metal scavengers but the effect of particle size in their removal behavior has not been explored yet. Here, these aspects were studied in three solids with similar structure and composition but different in size and morphology. Nano-sized LDHs were synthesized by a coprecipitation method with separate nucleation and aging steps and compared to a micro-sized LDH. Proton and Cu2+ uptake were studied using both kinetics and isotherms, which were fitted using different models. Decreasing particle size caused an increasing Mg2+ leaching in neutral and basic media and an increased dissolution speed in acid media, both of them due to the larger exposed surface of smaller particles. Depending on the Cu2+ concentration and LDH buffering capacity, Cu2+ removal was produced by Cu(OH)2 precipitation at the particle surface or by isomorphic substitution of Mg2+ ions at the octahedral sites of LDH layers (diadochy). The uptake rate of the latter was controlled by the intraparticle diffusion of Mg2+ ions and, consequently, it was quite independent of the particle size. On the other hand, the uptake capacity decreased with increasing particle size due to the site availability diminution with increasing diffusion path, which led to a decreasing volume of the layer available for Cu2+ uptake for increasing particle size values.Fil: Rojas Delgado, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaElsevier Science Sa2016-06-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54161Rojas Delgado, Ricardo; Effect of particle size on copper removal by layered double hydroxides; Elsevier Science Sa; Chemical Engineering Journal; 303; 3-6-2016; 331-3371385-89471385-8947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cej.2016.06.007info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1385894716308142info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:28Zoai:ri.conicet.gov.ar:11336/54161instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:28.583CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of particle size on copper removal by layered double hydroxides
title Effect of particle size on copper removal by layered double hydroxides
spellingShingle Effect of particle size on copper removal by layered double hydroxides
Rojas Delgado, Ricardo
Diadochy
Heavy Metal Removal
Isotherms
Kinetics
Surface Reactions
title_short Effect of particle size on copper removal by layered double hydroxides
title_full Effect of particle size on copper removal by layered double hydroxides
title_fullStr Effect of particle size on copper removal by layered double hydroxides
title_full_unstemmed Effect of particle size on copper removal by layered double hydroxides
title_sort Effect of particle size on copper removal by layered double hydroxides
dc.creator.none.fl_str_mv Rojas Delgado, Ricardo
author Rojas Delgado, Ricardo
author_facet Rojas Delgado, Ricardo
author_role author
dc.subject.none.fl_str_mv Diadochy
Heavy Metal Removal
Isotherms
Kinetics
Surface Reactions
topic Diadochy
Heavy Metal Removal
Isotherms
Kinetics
Surface Reactions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Layered double hydroxides are increasingly studied as heavy metal scavengers but the effect of particle size in their removal behavior has not been explored yet. Here, these aspects were studied in three solids with similar structure and composition but different in size and morphology. Nano-sized LDHs were synthesized by a coprecipitation method with separate nucleation and aging steps and compared to a micro-sized LDH. Proton and Cu2+ uptake were studied using both kinetics and isotherms, which were fitted using different models. Decreasing particle size caused an increasing Mg2+ leaching in neutral and basic media and an increased dissolution speed in acid media, both of them due to the larger exposed surface of smaller particles. Depending on the Cu2+ concentration and LDH buffering capacity, Cu2+ removal was produced by Cu(OH)2 precipitation at the particle surface or by isomorphic substitution of Mg2+ ions at the octahedral sites of LDH layers (diadochy). The uptake rate of the latter was controlled by the intraparticle diffusion of Mg2+ ions and, consequently, it was quite independent of the particle size. On the other hand, the uptake capacity decreased with increasing particle size due to the site availability diminution with increasing diffusion path, which led to a decreasing volume of the layer available for Cu2+ uptake for increasing particle size values.
Fil: Rojas Delgado, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
description Layered double hydroxides are increasingly studied as heavy metal scavengers but the effect of particle size in their removal behavior has not been explored yet. Here, these aspects were studied in three solids with similar structure and composition but different in size and morphology. Nano-sized LDHs were synthesized by a coprecipitation method with separate nucleation and aging steps and compared to a micro-sized LDH. Proton and Cu2+ uptake were studied using both kinetics and isotherms, which were fitted using different models. Decreasing particle size caused an increasing Mg2+ leaching in neutral and basic media and an increased dissolution speed in acid media, both of them due to the larger exposed surface of smaller particles. Depending on the Cu2+ concentration and LDH buffering capacity, Cu2+ removal was produced by Cu(OH)2 precipitation at the particle surface or by isomorphic substitution of Mg2+ ions at the octahedral sites of LDH layers (diadochy). The uptake rate of the latter was controlled by the intraparticle diffusion of Mg2+ ions and, consequently, it was quite independent of the particle size. On the other hand, the uptake capacity decreased with increasing particle size due to the site availability diminution with increasing diffusion path, which led to a decreasing volume of the layer available for Cu2+ uptake for increasing particle size values.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54161
Rojas Delgado, Ricardo; Effect of particle size on copper removal by layered double hydroxides; Elsevier Science Sa; Chemical Engineering Journal; 303; 3-6-2016; 331-337
1385-8947
1385-8947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54161
identifier_str_mv Rojas Delgado, Ricardo; Effect of particle size on copper removal by layered double hydroxides; Elsevier Science Sa; Chemical Engineering Journal; 303; 3-6-2016; 331-337
1385-8947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cej.2016.06.007
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1385894716308142
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269582077722624
score 12.885934