Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del Azul

Autores
Guevara Ochoa, Cristian; Briceño, Ninoska; Zimmermann, Erik Daniel; Vives, Luis Sebastián; Blanco, Martin; Cazenave, Georgina; Ares, María Guadalupe
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
El relleno de datos faltantes de precipitación diaria es un problema común en los estudios hidrológicos. El objetivo de este artículo es realizar una comparación y una evaluación de diferentes métodos que permiten rellenar los datos de precipitación diaria faltante para largos periodos en zona de llanura. Este estudio se realiza en la cuenca superior del arroyo del Azul para periodo de nueve años (2006-2014) y se emplean tres estaciones que tienen 3287 datos completos de precipitación diaria y seis estaciones con datos faltantes. Se implementaron siete métodos para el relleno de datos diarios de precipitación: el método de regresión lineal (MRL), el método de razones de distancia (MRD), el método de coeficientes de correlación con estaciones vecinas (MRC), el método de la razón promedio (MRP), método del inverso de la distancia al cuadrado (MIDW), seguido del método de cadenas de Márkov (MKV) y por último el método redes neuronales (MRN). Para la comparación y análisis de las diferentes metodologías se aplicaron diferentes estadísticos y gráficas temporales las cuales miden el ajuste de los datos calculados. Las redes probabilísticas y neuronales son los métodos más adecuados para rellenar datos en zonas de llanura. Los métodos que se aplicaron en el estudio obtuvieron un mejor ajuste en la época de otoño-invierno con menores precipitaciones, en comparación con el periodo primavera-verano en donde se obtuvieron ajustes más bajos debido a que en estas épocas se presentan tormentas convectivas con intensidades muy altas de precipitación.
The filling of missing daily precipitation data is a common problem in hydrological studies. The aim of this article is to make a comparison and evaluation of different methods to fill in missing daily rainfall data for long periods in plain areas. This study is carried out in the upper basin of the Azul stream for a period of nine years (2006-2014) and three stations that have 3287 complete data of daily precipitation and six stations with incomplete data are used. Seven methods were implemented for the filling of daily rainfall data: the linear regression method (MRL), the distance reasons method (MRD), the coefficients correlation method with neighboring stations (MRC) average reason method (MRP), the reasons distance method (MRD), the inverse distance weighted method (MIDW), following Markov chain method (MKV) and finally neural networks method (MRN). For the comparison and analysis of the different methodologies, different statistics and temporal graphs were applied, which measure the adjustment of the calculated data. Probabilistic and neural networks are the most suitable methods to fill data in plain areas. The methods applied in the study obtained a better adjustment in the autumn-winter season with lower rainfall, compared to the spring-summer period where lower adjustments were obtained because to that in these times there are convective storms with very high rainfall intensities.
Fil: Guevara Ochoa, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Briceño, Ninoska. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Zimmermann, Erik Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Centro Universidad Rosario de Investigaciones Hidroambientales; Argentina
Fil: Vives, Luis Sebastián. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Blanco, Martin. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Cazenave, Georgina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Ares, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Materia
Filling data series
Daily Precipitation
Plain
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58891

id CONICETDig_555e1de2999e3a70fabe2a794a6d2dd8
oai_identifier_str oai:ri.conicet.gov.ar:11336/58891
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del AzulFilling series of daily precipitation for long periods of time in plain areas. Case study superior basin of stream del AzulGuevara Ochoa, CristianBriceño, NinoskaZimmermann, Erik DanielVives, Luis SebastiánBlanco, MartinCazenave, GeorginaAres, María GuadalupeFilling data seriesDaily PrecipitationPlainhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1El relleno de datos faltantes de precipitación diaria es un problema común en los estudios hidrológicos. El objetivo de este artículo es realizar una comparación y una evaluación de diferentes métodos que permiten rellenar los datos de precipitación diaria faltante para largos periodos en zona de llanura. Este estudio se realiza en la cuenca superior del arroyo del Azul para periodo de nueve años (2006-2014) y se emplean tres estaciones que tienen 3287 datos completos de precipitación diaria y seis estaciones con datos faltantes. Se implementaron siete métodos para el relleno de datos diarios de precipitación: el método de regresión lineal (MRL), el método de razones de distancia (MRD), el método de coeficientes de correlación con estaciones vecinas (MRC), el método de la razón promedio (MRP), método del inverso de la distancia al cuadrado (MIDW), seguido del método de cadenas de Márkov (MKV) y por último el método redes neuronales (MRN). Para la comparación y análisis de las diferentes metodologías se aplicaron diferentes estadísticos y gráficas temporales las cuales miden el ajuste de los datos calculados. Las redes probabilísticas y neuronales son los métodos más adecuados para rellenar datos en zonas de llanura. Los métodos que se aplicaron en el estudio obtuvieron un mejor ajuste en la época de otoño-invierno con menores precipitaciones, en comparación con el periodo primavera-verano en donde se obtuvieron ajustes más bajos debido a que en estas épocas se presentan tormentas convectivas con intensidades muy altas de precipitación.The filling of missing daily precipitation data is a common problem in hydrological studies. The aim of this article is to make a comparison and evaluation of different methods to fill in missing daily rainfall data for long periods in plain areas. This study is carried out in the upper basin of the Azul stream for a period of nine years (2006-2014) and three stations that have 3287 complete data of daily precipitation and six stations with incomplete data are used. Seven methods were implemented for the filling of daily rainfall data: the linear regression method (MRL), the distance reasons method (MRD), the coefficients correlation method with neighboring stations (MRC) average reason method (MRP), the reasons distance method (MRD), the inverse distance weighted method (MIDW), following Markov chain method (MKV) and finally neural networks method (MRN). For the comparison and analysis of the different methodologies, different statistics and temporal graphs were applied, which measure the adjustment of the calculated data. Probabilistic and neural networks are the most suitable methods to fill data in plain areas. The methods applied in the study obtained a better adjustment in the autumn-winter season with lower rainfall, compared to the spring-summer period where lower adjustments were obtained because to that in these times there are convective storms with very high rainfall intensities.Fil: Guevara Ochoa, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; ArgentinaFil: Briceño, Ninoska. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; ArgentinaFil: Zimmermann, Erik Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Centro Universidad Rosario de Investigaciones Hidroambientales; ArgentinaFil: Vives, Luis Sebastián. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; ArgentinaFil: Blanco, Martin. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; ArgentinaFil: Cazenave, Georgina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; ArgentinaFil: Ares, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; ArgentinaAsociación Argentina de Geofísicos y Geodestas2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58891Guevara Ochoa, Cristian; Briceño, Ninoska; Zimmermann, Erik Daniel; Vives, Luis Sebastián; Blanco, Martin; et al.; Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del Azul ; Asociación Argentina de Geofísicos y Geodestas; Geoacta; 42; 1; 1-2017; 38-621852-7744CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://ppct.caicyt.gov.ar/index.php/geoacta/article/view/11620info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/ckyzgcinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:00:18Zoai:ri.conicet.gov.ar:11336/58891instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:00:18.783CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del Azul
Filling series of daily precipitation for long periods of time in plain areas. Case study superior basin of stream del Azul
title Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del Azul
spellingShingle Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del Azul
Guevara Ochoa, Cristian
Filling data series
Daily Precipitation
Plain
title_short Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del Azul
title_full Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del Azul
title_fullStr Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del Azul
title_full_unstemmed Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del Azul
title_sort Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del Azul
dc.creator.none.fl_str_mv Guevara Ochoa, Cristian
Briceño, Ninoska
Zimmermann, Erik Daniel
Vives, Luis Sebastián
Blanco, Martin
Cazenave, Georgina
Ares, María Guadalupe
author Guevara Ochoa, Cristian
author_facet Guevara Ochoa, Cristian
Briceño, Ninoska
Zimmermann, Erik Daniel
Vives, Luis Sebastián
Blanco, Martin
Cazenave, Georgina
Ares, María Guadalupe
author_role author
author2 Briceño, Ninoska
Zimmermann, Erik Daniel
Vives, Luis Sebastián
Blanco, Martin
Cazenave, Georgina
Ares, María Guadalupe
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Filling data series
Daily Precipitation
Plain
topic Filling data series
Daily Precipitation
Plain
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv El relleno de datos faltantes de precipitación diaria es un problema común en los estudios hidrológicos. El objetivo de este artículo es realizar una comparación y una evaluación de diferentes métodos que permiten rellenar los datos de precipitación diaria faltante para largos periodos en zona de llanura. Este estudio se realiza en la cuenca superior del arroyo del Azul para periodo de nueve años (2006-2014) y se emplean tres estaciones que tienen 3287 datos completos de precipitación diaria y seis estaciones con datos faltantes. Se implementaron siete métodos para el relleno de datos diarios de precipitación: el método de regresión lineal (MRL), el método de razones de distancia (MRD), el método de coeficientes de correlación con estaciones vecinas (MRC), el método de la razón promedio (MRP), método del inverso de la distancia al cuadrado (MIDW), seguido del método de cadenas de Márkov (MKV) y por último el método redes neuronales (MRN). Para la comparación y análisis de las diferentes metodologías se aplicaron diferentes estadísticos y gráficas temporales las cuales miden el ajuste de los datos calculados. Las redes probabilísticas y neuronales son los métodos más adecuados para rellenar datos en zonas de llanura. Los métodos que se aplicaron en el estudio obtuvieron un mejor ajuste en la época de otoño-invierno con menores precipitaciones, en comparación con el periodo primavera-verano en donde se obtuvieron ajustes más bajos debido a que en estas épocas se presentan tormentas convectivas con intensidades muy altas de precipitación.
The filling of missing daily precipitation data is a common problem in hydrological studies. The aim of this article is to make a comparison and evaluation of different methods to fill in missing daily rainfall data for long periods in plain areas. This study is carried out in the upper basin of the Azul stream for a period of nine years (2006-2014) and three stations that have 3287 complete data of daily precipitation and six stations with incomplete data are used. Seven methods were implemented for the filling of daily rainfall data: the linear regression method (MRL), the distance reasons method (MRD), the coefficients correlation method with neighboring stations (MRC) average reason method (MRP), the reasons distance method (MRD), the inverse distance weighted method (MIDW), following Markov chain method (MKV) and finally neural networks method (MRN). For the comparison and analysis of the different methodologies, different statistics and temporal graphs were applied, which measure the adjustment of the calculated data. Probabilistic and neural networks are the most suitable methods to fill data in plain areas. The methods applied in the study obtained a better adjustment in the autumn-winter season with lower rainfall, compared to the spring-summer period where lower adjustments were obtained because to that in these times there are convective storms with very high rainfall intensities.
Fil: Guevara Ochoa, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Briceño, Ninoska. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Zimmermann, Erik Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Centro Universidad Rosario de Investigaciones Hidroambientales; Argentina
Fil: Vives, Luis Sebastián. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Blanco, Martin. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Cazenave, Georgina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Ares, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
description El relleno de datos faltantes de precipitación diaria es un problema común en los estudios hidrológicos. El objetivo de este artículo es realizar una comparación y una evaluación de diferentes métodos que permiten rellenar los datos de precipitación diaria faltante para largos periodos en zona de llanura. Este estudio se realiza en la cuenca superior del arroyo del Azul para periodo de nueve años (2006-2014) y se emplean tres estaciones que tienen 3287 datos completos de precipitación diaria y seis estaciones con datos faltantes. Se implementaron siete métodos para el relleno de datos diarios de precipitación: el método de regresión lineal (MRL), el método de razones de distancia (MRD), el método de coeficientes de correlación con estaciones vecinas (MRC), el método de la razón promedio (MRP), método del inverso de la distancia al cuadrado (MIDW), seguido del método de cadenas de Márkov (MKV) y por último el método redes neuronales (MRN). Para la comparación y análisis de las diferentes metodologías se aplicaron diferentes estadísticos y gráficas temporales las cuales miden el ajuste de los datos calculados. Las redes probabilísticas y neuronales son los métodos más adecuados para rellenar datos en zonas de llanura. Los métodos que se aplicaron en el estudio obtuvieron un mejor ajuste en la época de otoño-invierno con menores precipitaciones, en comparación con el periodo primavera-verano en donde se obtuvieron ajustes más bajos debido a que en estas épocas se presentan tormentas convectivas con intensidades muy altas de precipitación.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58891
Guevara Ochoa, Cristian; Briceño, Ninoska; Zimmermann, Erik Daniel; Vives, Luis Sebastián; Blanco, Martin; et al.; Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del Azul ; Asociación Argentina de Geofísicos y Geodestas; Geoacta; 42; 1; 1-2017; 38-62
1852-7744
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58891
identifier_str_mv Guevara Ochoa, Cristian; Briceño, Ninoska; Zimmermann, Erik Daniel; Vives, Luis Sebastián; Blanco, Martin; et al.; Relleno de series de precipitación diaria para largos periodos de tiempo en zonas de llanura : caso de estudio cuenca superior del arroyo del Azul ; Asociación Argentina de Geofísicos y Geodestas; Geoacta; 42; 1; 1-2017; 38-62
1852-7744
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://ppct.caicyt.gov.ar/index.php/geoacta/article/view/11620
info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/ckyzgc
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de Geofísicos y Geodestas
publisher.none.fl_str_mv Asociación Argentina de Geofísicos y Geodestas
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083142055624704
score 13.22299