Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects

Autores
Habit, Evelyn; Piedra, Priscila; Ruzzante, Daniel E.; Walde, Sandra J.; Belk, Mark C.; Cussac, Victor Enrique; Gonzalez, Jorge; Colin, Nicole
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Aim: Globally, one of the major threats to the integrity of native faunas is the loss of biodiversity that can result from the introduction of exotics. Here we document recent changes in the distribution of five common fish species that are linked to introductions in Chile.Globally, one of the major threats to the integrity of native faunas is the loss of biodiversity that can result from the introduction of exotics. Here we document recent changes in the distribution of five common fish species that are linked to introductions in Chile. Location Chile from 28° S to 54° S.Chile from 28° S to 54° S. Methods We assess the extent of changes in distribution of galaxiid species by comparing their historical and current distributions based on the results of the most extensive survey of freshwater fishes in Chile to date, a range that encompasses the full latitudinal and elevational range of the Galaxiidae in Chile. We test for relationships of the distributions and abundances of native fishes with the incidence of introduced species.We assess the extent of changes in distribution of galaxiid species by comparing their historical and current distributions based on the results of the most extensive survey of freshwater fishes in Chile to date, a range that encompasses the full latitudinal and elevational range of the Galaxiidae in Chile. We test for relationships of the distributions and abundances of native fishes with the incidence of introduced species. Results The latitudinal range of Galaxias maculatus has declined by 26%, and most of this reduction has occurred in the northern part of its range. Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.The latitudinal range of Galaxias maculatus has declined by 26%, and most of this reduction has occurred in the northern part of its range. Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low. Main conclusions We suggest that negative interactions between introduced and native fish are responsible for some of the range reductions among Galaxiidae in Chile. The severity of the impacts varies with latitude and altitude and is probably related to temperature. The effects of Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high-altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.We suggest that negative interactions between introduced and native fish are responsible for some of the range reductions among Galaxiidae in Chile. The severity of the impacts varies with latitude and altitude and is probably related to temperature. The effects of Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high-altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high-altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.
Fil: Habit, Evelyn. Universidad de Concepción; Chile
Fil: Piedra, Priscila. Universidad de Concepción; Chile
Fil: Ruzzante, Daniel E.. Centro de Investigacion En Ecosistemas de la Patagonia;
Fil: Walde, Sandra J.. Centro de Investigacion En Ecosistemas de la Patagonia;
Fil: Belk, Mark C.. University Brigham Young; Estados Unidos
Fil: Cussac, Victor Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Gonzalez, Jorge. Universidad de Concepción; Chile
Fil: Colin, Nicole. Universidad de Concepción; Chile
Materia
Anthropogenic impacts,
conservation,
Chile,
distribution,
Galaxiidae,
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/275357

id CONICETDig_5542959993cb58a3a2e507a4a4d4532c
oai_identifier_str oai:ri.conicet.gov.ar:11336/275357
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Changes in the distribution of native fishes in response to introduced species and other anthropogenic effectsHabit, EvelynPiedra, PriscilaRuzzante, Daniel E.Walde, Sandra J.Belk, Mark C.Cussac, Victor EnriqueGonzalez, JorgeColin, NicoleAnthropogenic impacts,conservation,Chile,distribution,Galaxiidae,https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Aim: Globally, one of the major threats to the integrity of native faunas is the loss of biodiversity that can result from the introduction of exotics. Here we document recent changes in the distribution of five common fish species that are linked to introductions in Chile.Globally, one of the major threats to the integrity of native faunas is the loss of biodiversity that can result from the introduction of exotics. Here we document recent changes in the distribution of five common fish species that are linked to introductions in Chile. Location Chile from 28° S to 54° S.Chile from 28° S to 54° S. Methods We assess the extent of changes in distribution of galaxiid species by comparing their historical and current distributions based on the results of the most extensive survey of freshwater fishes in Chile to date, a range that encompasses the full latitudinal and elevational range of the Galaxiidae in Chile. We test for relationships of the distributions and abundances of native fishes with the incidence of introduced species.We assess the extent of changes in distribution of galaxiid species by comparing their historical and current distributions based on the results of the most extensive survey of freshwater fishes in Chile to date, a range that encompasses the full latitudinal and elevational range of the Galaxiidae in Chile. We test for relationships of the distributions and abundances of native fishes with the incidence of introduced species. Results The latitudinal range of Galaxias maculatus has declined by 26%, and most of this reduction has occurred in the northern part of its range. Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.The latitudinal range of Galaxias maculatus has declined by 26%, and most of this reduction has occurred in the northern part of its range. Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low. Main conclusions We suggest that negative interactions between introduced and native fish are responsible for some of the range reductions among Galaxiidae in Chile. The severity of the impacts varies with latitude and altitude and is probably related to temperature. The effects of Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high-altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.We suggest that negative interactions between introduced and native fish are responsible for some of the range reductions among Galaxiidae in Chile. The severity of the impacts varies with latitude and altitude and is probably related to temperature. The effects of Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high-altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high-altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.Fil: Habit, Evelyn. Universidad de Concepción; ChileFil: Piedra, Priscila. Universidad de Concepción; ChileFil: Ruzzante, Daniel E.. Centro de Investigacion En Ecosistemas de la Patagonia;Fil: Walde, Sandra J.. Centro de Investigacion En Ecosistemas de la Patagonia;Fil: Belk, Mark C.. University Brigham Young; Estados UnidosFil: Cussac, Victor Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Gonzalez, Jorge. Universidad de Concepción; ChileFil: Colin, Nicole. Universidad de Concepción; ChileWiley Blackwell Publishing, Inc2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275357Habit, Evelyn; Piedra, Priscila; Ruzzante, Daniel E.; Walde, Sandra J.; Belk, Mark C.; et al.; Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects; Wiley Blackwell Publishing, Inc; Global Ecology and Biogeography; 19; 5; 8-2010; 697-7101466-822XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1466-8238.2010.00541.xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1466-8238.2010.00541.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-17T15:26:29Zoai:ri.conicet.gov.ar:11336/275357instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-17 15:26:29.433CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects
title Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects
spellingShingle Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects
Habit, Evelyn
Anthropogenic impacts,
conservation,
Chile,
distribution,
Galaxiidae,
title_short Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects
title_full Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects
title_fullStr Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects
title_full_unstemmed Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects
title_sort Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects
dc.creator.none.fl_str_mv Habit, Evelyn
Piedra, Priscila
Ruzzante, Daniel E.
Walde, Sandra J.
Belk, Mark C.
Cussac, Victor Enrique
Gonzalez, Jorge
Colin, Nicole
author Habit, Evelyn
author_facet Habit, Evelyn
Piedra, Priscila
Ruzzante, Daniel E.
Walde, Sandra J.
Belk, Mark C.
Cussac, Victor Enrique
Gonzalez, Jorge
Colin, Nicole
author_role author
author2 Piedra, Priscila
Ruzzante, Daniel E.
Walde, Sandra J.
Belk, Mark C.
Cussac, Victor Enrique
Gonzalez, Jorge
Colin, Nicole
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Anthropogenic impacts,
conservation,
Chile,
distribution,
Galaxiidae,
topic Anthropogenic impacts,
conservation,
Chile,
distribution,
Galaxiidae,
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Aim: Globally, one of the major threats to the integrity of native faunas is the loss of biodiversity that can result from the introduction of exotics. Here we document recent changes in the distribution of five common fish species that are linked to introductions in Chile.Globally, one of the major threats to the integrity of native faunas is the loss of biodiversity that can result from the introduction of exotics. Here we document recent changes in the distribution of five common fish species that are linked to introductions in Chile. Location Chile from 28° S to 54° S.Chile from 28° S to 54° S. Methods We assess the extent of changes in distribution of galaxiid species by comparing their historical and current distributions based on the results of the most extensive survey of freshwater fishes in Chile to date, a range that encompasses the full latitudinal and elevational range of the Galaxiidae in Chile. We test for relationships of the distributions and abundances of native fishes with the incidence of introduced species.We assess the extent of changes in distribution of galaxiid species by comparing their historical and current distributions based on the results of the most extensive survey of freshwater fishes in Chile to date, a range that encompasses the full latitudinal and elevational range of the Galaxiidae in Chile. We test for relationships of the distributions and abundances of native fishes with the incidence of introduced species. Results The latitudinal range of Galaxias maculatus has declined by 26%, and most of this reduction has occurred in the northern part of its range. Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.The latitudinal range of Galaxias maculatus has declined by 26%, and most of this reduction has occurred in the northern part of its range. Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low. Main conclusions We suggest that negative interactions between introduced and native fish are responsible for some of the range reductions among Galaxiidae in Chile. The severity of the impacts varies with latitude and altitude and is probably related to temperature. The effects of Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high-altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.We suggest that negative interactions between introduced and native fish are responsible for some of the range reductions among Galaxiidae in Chile. The severity of the impacts varies with latitude and altitude and is probably related to temperature. The effects of Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high-altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high-altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.
Fil: Habit, Evelyn. Universidad de Concepción; Chile
Fil: Piedra, Priscila. Universidad de Concepción; Chile
Fil: Ruzzante, Daniel E.. Centro de Investigacion En Ecosistemas de la Patagonia;
Fil: Walde, Sandra J.. Centro de Investigacion En Ecosistemas de la Patagonia;
Fil: Belk, Mark C.. University Brigham Young; Estados Unidos
Fil: Cussac, Victor Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Gonzalez, Jorge. Universidad de Concepción; Chile
Fil: Colin, Nicole. Universidad de Concepción; Chile
description Aim: Globally, one of the major threats to the integrity of native faunas is the loss of biodiversity that can result from the introduction of exotics. Here we document recent changes in the distribution of five common fish species that are linked to introductions in Chile.Globally, one of the major threats to the integrity of native faunas is the loss of biodiversity that can result from the introduction of exotics. Here we document recent changes in the distribution of five common fish species that are linked to introductions in Chile. Location Chile from 28° S to 54° S.Chile from 28° S to 54° S. Methods We assess the extent of changes in distribution of galaxiid species by comparing their historical and current distributions based on the results of the most extensive survey of freshwater fishes in Chile to date, a range that encompasses the full latitudinal and elevational range of the Galaxiidae in Chile. We test for relationships of the distributions and abundances of native fishes with the incidence of introduced species.We assess the extent of changes in distribution of galaxiid species by comparing their historical and current distributions based on the results of the most extensive survey of freshwater fishes in Chile to date, a range that encompasses the full latitudinal and elevational range of the Galaxiidae in Chile. We test for relationships of the distributions and abundances of native fishes with the incidence of introduced species. Results The latitudinal range of Galaxias maculatus has declined by 26%, and most of this reduction has occurred in the northern part of its range. Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.The latitudinal range of Galaxias maculatus has declined by 26%, and most of this reduction has occurred in the northern part of its range. Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Aplochiton taeniatus and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.and Brachygalaxias bullocki have experienced reductions (8–17% loss) in total drainage area occupied, and they have disappeared from, or are now extremely difficult to find, in latitudes 36° to 41° S, coincidently with areas of urban growth and intense economic activities. The distribution of Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Galaxias platei has, instead, increased considerably. In northern basins, G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.G. maculatus has apparently been replaced by an introduced poeciliid Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Gambusia sp. High-elevation systems remain dominated by native Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low.Galaxias platei, whereas systems at intermediate elevations, especially rivers, are now dominated by introduced salmonids. Within drainages, native galaxiids remain abundant where exotic salmonid abundance is low. Main conclusions We suggest that negative interactions between introduced and native fish are responsible for some of the range reductions among Galaxiidae in Chile. The severity of the impacts varies with latitude and altitude and is probably related to temperature. The effects of Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high-altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.We suggest that negative interactions between introduced and native fish are responsible for some of the range reductions among Galaxiidae in Chile. The severity of the impacts varies with latitude and altitude and is probably related to temperature. The effects of Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high-altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.Gambusia are restricted to warmer systems. Native fish also appear to have found temperature refugia from salmonids; impacts are low in the warmer northern and coastal systems, as well as in high-altitude relatively cold systems. Native fish also appear less vulnerable to salmonids in lakes than in rivers. This study identifies watersheds critical for the conservation of biodiversity within the Galaxiidae.
publishDate 2010
dc.date.none.fl_str_mv 2010-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/275357
Habit, Evelyn; Piedra, Priscila; Ruzzante, Daniel E.; Walde, Sandra J.; Belk, Mark C.; et al.; Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects; Wiley Blackwell Publishing, Inc; Global Ecology and Biogeography; 19; 5; 8-2010; 697-710
1466-822X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/275357
identifier_str_mv Habit, Evelyn; Piedra, Priscila; Ruzzante, Daniel E.; Walde, Sandra J.; Belk, Mark C.; et al.; Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects; Wiley Blackwell Publishing, Inc; Global Ecology and Biogeography; 19; 5; 8-2010; 697-710
1466-822X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1466-8238.2010.00541.x
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1466-8238.2010.00541.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1851853046755098624
score 13.176297