Modeling the micro-indentation of metal matrix composites

Autores
Rosenberger, Mario Roberto; Forlerer, Elena; Schvezov, Carlos Enrique
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A finite element model is developed to quantify the effect of the depth and diameter of the reinforcement in the hardness number of metal matrix composite. The model includes a spherical indenter pressed against a metal containing one reinforcing particle. The results are validated for the non-reinforced material comparing the results of the simulation with analytical models that calculate the properties of the material using Brinell and Meyer hardness and the load-displacement curve. A simple composite consisting of a ductile matrix containing one hard particle of size 0.25-1 of the indenter size and placed at depths 0.1-0.5 times the indenter radius are assumed. The diameters and depths of the impressions for reinforced and matrix materials are determined for different particle size and positions, and the influence on the hardness number is calculated. An overestimation in hardness of reinforced materials was observed with the values dependant on the position and size of the particle. Maximum overestimations of 15% using visual inspection and of 74% using the Oliver and Pharr technique were found in the reinforced materials. In addition, if the impression diameter is at least twice the diameter of the reinforcement, a maximum error of 5% in hardness is produced. © 2006 Elsevier B.V. All rights reserved.
Fil: Rosenberger, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Misiones; Argentina
Fil: Forlerer, Elena. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
Fil: Schvezov, Carlos Enrique. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de Misiones; Argentina
Materia
Finite Elements Method
Indentation
Metal Matrix Composite
Microhardness
Modeling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59757

id CONICETDig_54c4d4d86b462ab77bc70dbc4235ea67
oai_identifier_str oai:ri.conicet.gov.ar:11336/59757
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modeling the micro-indentation of metal matrix compositesRosenberger, Mario RobertoForlerer, ElenaSchvezov, Carlos EnriqueFinite Elements MethodIndentationMetal Matrix CompositeMicrohardnessModelinghttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2A finite element model is developed to quantify the effect of the depth and diameter of the reinforcement in the hardness number of metal matrix composite. The model includes a spherical indenter pressed against a metal containing one reinforcing particle. The results are validated for the non-reinforced material comparing the results of the simulation with analytical models that calculate the properties of the material using Brinell and Meyer hardness and the load-displacement curve. A simple composite consisting of a ductile matrix containing one hard particle of size 0.25-1 of the indenter size and placed at depths 0.1-0.5 times the indenter radius are assumed. The diameters and depths of the impressions for reinforced and matrix materials are determined for different particle size and positions, and the influence on the hardness number is calculated. An overestimation in hardness of reinforced materials was observed with the values dependant on the position and size of the particle. Maximum overestimations of 15% using visual inspection and of 74% using the Oliver and Pharr technique were found in the reinforced materials. In addition, if the impression diameter is at least twice the diameter of the reinforcement, a maximum error of 5% in hardness is produced. © 2006 Elsevier B.V. All rights reserved.Fil: Rosenberger, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Misiones; ArgentinaFil: Forlerer, Elena. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Schvezov, Carlos Enrique. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de Misiones; ArgentinaElsevier Science Sa2007-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59757Rosenberger, Mario Roberto; Forlerer, Elena; Schvezov, Carlos Enrique; Modeling the micro-indentation of metal matrix composites; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 463; 1-2; 8-2007; 275-2830921-5093CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.msea.2006.09.119info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921509306025639?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:33Zoai:ri.conicet.gov.ar:11336/59757instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:34.142CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modeling the micro-indentation of metal matrix composites
title Modeling the micro-indentation of metal matrix composites
spellingShingle Modeling the micro-indentation of metal matrix composites
Rosenberger, Mario Roberto
Finite Elements Method
Indentation
Metal Matrix Composite
Microhardness
Modeling
title_short Modeling the micro-indentation of metal matrix composites
title_full Modeling the micro-indentation of metal matrix composites
title_fullStr Modeling the micro-indentation of metal matrix composites
title_full_unstemmed Modeling the micro-indentation of metal matrix composites
title_sort Modeling the micro-indentation of metal matrix composites
dc.creator.none.fl_str_mv Rosenberger, Mario Roberto
Forlerer, Elena
Schvezov, Carlos Enrique
author Rosenberger, Mario Roberto
author_facet Rosenberger, Mario Roberto
Forlerer, Elena
Schvezov, Carlos Enrique
author_role author
author2 Forlerer, Elena
Schvezov, Carlos Enrique
author2_role author
author
dc.subject.none.fl_str_mv Finite Elements Method
Indentation
Metal Matrix Composite
Microhardness
Modeling
topic Finite Elements Method
Indentation
Metal Matrix Composite
Microhardness
Modeling
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A finite element model is developed to quantify the effect of the depth and diameter of the reinforcement in the hardness number of metal matrix composite. The model includes a spherical indenter pressed against a metal containing one reinforcing particle. The results are validated for the non-reinforced material comparing the results of the simulation with analytical models that calculate the properties of the material using Brinell and Meyer hardness and the load-displacement curve. A simple composite consisting of a ductile matrix containing one hard particle of size 0.25-1 of the indenter size and placed at depths 0.1-0.5 times the indenter radius are assumed. The diameters and depths of the impressions for reinforced and matrix materials are determined for different particle size and positions, and the influence on the hardness number is calculated. An overestimation in hardness of reinforced materials was observed with the values dependant on the position and size of the particle. Maximum overestimations of 15% using visual inspection and of 74% using the Oliver and Pharr technique were found in the reinforced materials. In addition, if the impression diameter is at least twice the diameter of the reinforcement, a maximum error of 5% in hardness is produced. © 2006 Elsevier B.V. All rights reserved.
Fil: Rosenberger, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Misiones; Argentina
Fil: Forlerer, Elena. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
Fil: Schvezov, Carlos Enrique. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de Misiones; Argentina
description A finite element model is developed to quantify the effect of the depth and diameter of the reinforcement in the hardness number of metal matrix composite. The model includes a spherical indenter pressed against a metal containing one reinforcing particle. The results are validated for the non-reinforced material comparing the results of the simulation with analytical models that calculate the properties of the material using Brinell and Meyer hardness and the load-displacement curve. A simple composite consisting of a ductile matrix containing one hard particle of size 0.25-1 of the indenter size and placed at depths 0.1-0.5 times the indenter radius are assumed. The diameters and depths of the impressions for reinforced and matrix materials are determined for different particle size and positions, and the influence on the hardness number is calculated. An overestimation in hardness of reinforced materials was observed with the values dependant on the position and size of the particle. Maximum overestimations of 15% using visual inspection and of 74% using the Oliver and Pharr technique were found in the reinforced materials. In addition, if the impression diameter is at least twice the diameter of the reinforcement, a maximum error of 5% in hardness is produced. © 2006 Elsevier B.V. All rights reserved.
publishDate 2007
dc.date.none.fl_str_mv 2007-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59757
Rosenberger, Mario Roberto; Forlerer, Elena; Schvezov, Carlos Enrique; Modeling the micro-indentation of metal matrix composites; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 463; 1-2; 8-2007; 275-283
0921-5093
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59757
identifier_str_mv Rosenberger, Mario Roberto; Forlerer, Elena; Schvezov, Carlos Enrique; Modeling the micro-indentation of metal matrix composites; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 463; 1-2; 8-2007; 275-283
0921-5093
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.msea.2006.09.119
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921509306025639?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269916928933888
score 13.13397