Simple methods to predict the minimum baking time of bread

Autores
Purlis, Emmanuel
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Baking is a complex transformation process since many coupled physical phenomena take place within the product. For practical industrial purposes, it would be desirable to count on simple methods to predict accurately the process time. Unlike food preservation operations, two different process times can be defined: the critical or minimum time is determined by the complete dough/crumb transition and ensures the acceptability of the product; the quality time is given by a target value of a certain sensory attribute (e.g. surface colour), and it is associated with preference of consumers. Despite the existing physics-based models which aim to describe comprehensively the baking process, there is a gap between academic knowledge and the industrial practice and needs of design engineers. Therefore, in this work we explore three simple methods to predict the minimum baking time of bread, which are based on a previously developed and validated heat and mass transport model. All three simple methods (two heat transfer models and one regression equation) predict very well the critical time for a wide and common range of operating conditions; mean absolute relative error is 3.61%, 1.17% and 0.30%, respectively. The degree of difficulty regarding implementation of simple methods is also discussed. Finally, it is demonstrated that heat and mass transfer can be decoupled for certain calculations, by using appropriate simplifications based on knowledge of transport phenomena governing the process.
Fil: Purlis, Emmanuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina
Materia
EVAPORATION FRONT
MOVING BOUNDARY PROBLEM
OPTIMISATION
PROCESS DESIGN
SIMULATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/103369

id CONICETDig_54087b84c22580a17a4ef07c38fe6d33
oai_identifier_str oai:ri.conicet.gov.ar:11336/103369
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simple methods to predict the minimum baking time of breadPurlis, EmmanuelEVAPORATION FRONTMOVING BOUNDARY PROBLEMOPTIMISATIONPROCESS DESIGNSIMULATIONhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Baking is a complex transformation process since many coupled physical phenomena take place within the product. For practical industrial purposes, it would be desirable to count on simple methods to predict accurately the process time. Unlike food preservation operations, two different process times can be defined: the critical or minimum time is determined by the complete dough/crumb transition and ensures the acceptability of the product; the quality time is given by a target value of a certain sensory attribute (e.g. surface colour), and it is associated with preference of consumers. Despite the existing physics-based models which aim to describe comprehensively the baking process, there is a gap between academic knowledge and the industrial practice and needs of design engineers. Therefore, in this work we explore three simple methods to predict the minimum baking time of bread, which are based on a previously developed and validated heat and mass transport model. All three simple methods (two heat transfer models and one regression equation) predict very well the critical time for a wide and common range of operating conditions; mean absolute relative error is 3.61%, 1.17% and 0.30%, respectively. The degree of difficulty regarding implementation of simple methods is also discussed. Finally, it is demonstrated that heat and mass transfer can be decoupled for certain calculations, by using appropriate simplifications based on knowledge of transport phenomena governing the process.Fil: Purlis, Emmanuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaElsevier2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/103369Purlis, Emmanuel; Simple methods to predict the minimum baking time of bread; Elsevier; Food Control; 104; 10-2019; 217-2230956-7135CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2019.04.021info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0956713519301768info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:37:05Zoai:ri.conicet.gov.ar:11336/103369instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:37:05.406CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simple methods to predict the minimum baking time of bread
title Simple methods to predict the minimum baking time of bread
spellingShingle Simple methods to predict the minimum baking time of bread
Purlis, Emmanuel
EVAPORATION FRONT
MOVING BOUNDARY PROBLEM
OPTIMISATION
PROCESS DESIGN
SIMULATION
title_short Simple methods to predict the minimum baking time of bread
title_full Simple methods to predict the minimum baking time of bread
title_fullStr Simple methods to predict the minimum baking time of bread
title_full_unstemmed Simple methods to predict the minimum baking time of bread
title_sort Simple methods to predict the minimum baking time of bread
dc.creator.none.fl_str_mv Purlis, Emmanuel
author Purlis, Emmanuel
author_facet Purlis, Emmanuel
author_role author
dc.subject.none.fl_str_mv EVAPORATION FRONT
MOVING BOUNDARY PROBLEM
OPTIMISATION
PROCESS DESIGN
SIMULATION
topic EVAPORATION FRONT
MOVING BOUNDARY PROBLEM
OPTIMISATION
PROCESS DESIGN
SIMULATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Baking is a complex transformation process since many coupled physical phenomena take place within the product. For practical industrial purposes, it would be desirable to count on simple methods to predict accurately the process time. Unlike food preservation operations, two different process times can be defined: the critical or minimum time is determined by the complete dough/crumb transition and ensures the acceptability of the product; the quality time is given by a target value of a certain sensory attribute (e.g. surface colour), and it is associated with preference of consumers. Despite the existing physics-based models which aim to describe comprehensively the baking process, there is a gap between academic knowledge and the industrial practice and needs of design engineers. Therefore, in this work we explore three simple methods to predict the minimum baking time of bread, which are based on a previously developed and validated heat and mass transport model. All three simple methods (two heat transfer models and one regression equation) predict very well the critical time for a wide and common range of operating conditions; mean absolute relative error is 3.61%, 1.17% and 0.30%, respectively. The degree of difficulty regarding implementation of simple methods is also discussed. Finally, it is demonstrated that heat and mass transfer can be decoupled for certain calculations, by using appropriate simplifications based on knowledge of transport phenomena governing the process.
Fil: Purlis, Emmanuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina
description Baking is a complex transformation process since many coupled physical phenomena take place within the product. For practical industrial purposes, it would be desirable to count on simple methods to predict accurately the process time. Unlike food preservation operations, two different process times can be defined: the critical or minimum time is determined by the complete dough/crumb transition and ensures the acceptability of the product; the quality time is given by a target value of a certain sensory attribute (e.g. surface colour), and it is associated with preference of consumers. Despite the existing physics-based models which aim to describe comprehensively the baking process, there is a gap between academic knowledge and the industrial practice and needs of design engineers. Therefore, in this work we explore three simple methods to predict the minimum baking time of bread, which are based on a previously developed and validated heat and mass transport model. All three simple methods (two heat transfer models and one regression equation) predict very well the critical time for a wide and common range of operating conditions; mean absolute relative error is 3.61%, 1.17% and 0.30%, respectively. The degree of difficulty regarding implementation of simple methods is also discussed. Finally, it is demonstrated that heat and mass transfer can be decoupled for certain calculations, by using appropriate simplifications based on knowledge of transport phenomena governing the process.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/103369
Purlis, Emmanuel; Simple methods to predict the minimum baking time of bread; Elsevier; Food Control; 104; 10-2019; 217-223
0956-7135
CONICET Digital
CONICET
url http://hdl.handle.net/11336/103369
identifier_str_mv Purlis, Emmanuel; Simple methods to predict the minimum baking time of bread; Elsevier; Food Control; 104; 10-2019; 217-223
0956-7135
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2019.04.021
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0956713519301768
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083492386963456
score 13.22299