Simple methods to predict the minimum baking time of bread
- Autores
- Purlis, Emmanuel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Baking is a complex transformation process since many coupled physical phenomena take place within the product. For practical industrial purposes, it would be desirable to count on simple methods to predict accurately the process time. Unlike food preservation operations, two different process times can be defined: the critical or minimum time is determined by the complete dough/crumb transition and ensures the acceptability of the product; the quality time is given by a target value of a certain sensory attribute (e.g. surface colour), and it is associated with preference of consumers. Despite the existing physics-based models which aim to describe comprehensively the baking process, there is a gap between academic knowledge and the industrial practice and needs of design engineers. Therefore, in this work we explore three simple methods to predict the minimum baking time of bread, which are based on a previously developed and validated heat and mass transport model. All three simple methods (two heat transfer models and one regression equation) predict very well the critical time for a wide and common range of operating conditions; mean absolute relative error is 3.61%, 1.17% and 0.30%, respectively. The degree of difficulty regarding implementation of simple methods is also discussed. Finally, it is demonstrated that heat and mass transfer can be decoupled for certain calculations, by using appropriate simplifications based on knowledge of transport phenomena governing the process.
Fil: Purlis, Emmanuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina - Materia
-
EVAPORATION FRONT
MOVING BOUNDARY PROBLEM
OPTIMISATION
PROCESS DESIGN
SIMULATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/103369
Ver los metadatos del registro completo
id |
CONICETDig_54087b84c22580a17a4ef07c38fe6d33 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/103369 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simple methods to predict the minimum baking time of breadPurlis, EmmanuelEVAPORATION FRONTMOVING BOUNDARY PROBLEMOPTIMISATIONPROCESS DESIGNSIMULATIONhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Baking is a complex transformation process since many coupled physical phenomena take place within the product. For practical industrial purposes, it would be desirable to count on simple methods to predict accurately the process time. Unlike food preservation operations, two different process times can be defined: the critical or minimum time is determined by the complete dough/crumb transition and ensures the acceptability of the product; the quality time is given by a target value of a certain sensory attribute (e.g. surface colour), and it is associated with preference of consumers. Despite the existing physics-based models which aim to describe comprehensively the baking process, there is a gap between academic knowledge and the industrial practice and needs of design engineers. Therefore, in this work we explore three simple methods to predict the minimum baking time of bread, which are based on a previously developed and validated heat and mass transport model. All three simple methods (two heat transfer models and one regression equation) predict very well the critical time for a wide and common range of operating conditions; mean absolute relative error is 3.61%, 1.17% and 0.30%, respectively. The degree of difficulty regarding implementation of simple methods is also discussed. Finally, it is demonstrated that heat and mass transfer can be decoupled for certain calculations, by using appropriate simplifications based on knowledge of transport phenomena governing the process.Fil: Purlis, Emmanuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaElsevier2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/103369Purlis, Emmanuel; Simple methods to predict the minimum baking time of bread; Elsevier; Food Control; 104; 10-2019; 217-2230956-7135CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2019.04.021info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0956713519301768info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:37:05Zoai:ri.conicet.gov.ar:11336/103369instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:37:05.406CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simple methods to predict the minimum baking time of bread |
title |
Simple methods to predict the minimum baking time of bread |
spellingShingle |
Simple methods to predict the minimum baking time of bread Purlis, Emmanuel EVAPORATION FRONT MOVING BOUNDARY PROBLEM OPTIMISATION PROCESS DESIGN SIMULATION |
title_short |
Simple methods to predict the minimum baking time of bread |
title_full |
Simple methods to predict the minimum baking time of bread |
title_fullStr |
Simple methods to predict the minimum baking time of bread |
title_full_unstemmed |
Simple methods to predict the minimum baking time of bread |
title_sort |
Simple methods to predict the minimum baking time of bread |
dc.creator.none.fl_str_mv |
Purlis, Emmanuel |
author |
Purlis, Emmanuel |
author_facet |
Purlis, Emmanuel |
author_role |
author |
dc.subject.none.fl_str_mv |
EVAPORATION FRONT MOVING BOUNDARY PROBLEM OPTIMISATION PROCESS DESIGN SIMULATION |
topic |
EVAPORATION FRONT MOVING BOUNDARY PROBLEM OPTIMISATION PROCESS DESIGN SIMULATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Baking is a complex transformation process since many coupled physical phenomena take place within the product. For practical industrial purposes, it would be desirable to count on simple methods to predict accurately the process time. Unlike food preservation operations, two different process times can be defined: the critical or minimum time is determined by the complete dough/crumb transition and ensures the acceptability of the product; the quality time is given by a target value of a certain sensory attribute (e.g. surface colour), and it is associated with preference of consumers. Despite the existing physics-based models which aim to describe comprehensively the baking process, there is a gap between academic knowledge and the industrial practice and needs of design engineers. Therefore, in this work we explore three simple methods to predict the minimum baking time of bread, which are based on a previously developed and validated heat and mass transport model. All three simple methods (two heat transfer models and one regression equation) predict very well the critical time for a wide and common range of operating conditions; mean absolute relative error is 3.61%, 1.17% and 0.30%, respectively. The degree of difficulty regarding implementation of simple methods is also discussed. Finally, it is demonstrated that heat and mass transfer can be decoupled for certain calculations, by using appropriate simplifications based on knowledge of transport phenomena governing the process. Fil: Purlis, Emmanuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina |
description |
Baking is a complex transformation process since many coupled physical phenomena take place within the product. For practical industrial purposes, it would be desirable to count on simple methods to predict accurately the process time. Unlike food preservation operations, two different process times can be defined: the critical or minimum time is determined by the complete dough/crumb transition and ensures the acceptability of the product; the quality time is given by a target value of a certain sensory attribute (e.g. surface colour), and it is associated with preference of consumers. Despite the existing physics-based models which aim to describe comprehensively the baking process, there is a gap between academic knowledge and the industrial practice and needs of design engineers. Therefore, in this work we explore three simple methods to predict the minimum baking time of bread, which are based on a previously developed and validated heat and mass transport model. All three simple methods (two heat transfer models and one regression equation) predict very well the critical time for a wide and common range of operating conditions; mean absolute relative error is 3.61%, 1.17% and 0.30%, respectively. The degree of difficulty regarding implementation of simple methods is also discussed. Finally, it is demonstrated that heat and mass transfer can be decoupled for certain calculations, by using appropriate simplifications based on knowledge of transport phenomena governing the process. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/103369 Purlis, Emmanuel; Simple methods to predict the minimum baking time of bread; Elsevier; Food Control; 104; 10-2019; 217-223 0956-7135 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/103369 |
identifier_str_mv |
Purlis, Emmanuel; Simple methods to predict the minimum baking time of bread; Elsevier; Food Control; 104; 10-2019; 217-223 0956-7135 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2019.04.021 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0956713519301768 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083492386963456 |
score |
13.22299 |