Numerical tool to model collapse of polymeric liners in pipelines

Autores
Rueda, Federico; Otegui, Luis Jose; Frontini, Patricia Maria
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Polymeric liners are widely used in the gas and oil transportation industry. They provide improved corrosion resistance to metallic tubes and they also are used in rehabilitation of deteriorated pipelines. Oil derived gases permeate across the liner wall; which during rapid depressurization produce external pressure that in many cases lead to buckling collapse of the liner. A number of simple models to calculate critical pressure for buckling collapse are available, but these models do not account for surface or geometrical defects that are usually present in liners under service conditions. The non-linear characteristics of the problem generate convergence issues that make it difficult for classical FEM to reproduce the actual behavior of experimental curves. This paper is concerned with simulation of the buckling collapse of HDPE liners. Three ways to raise and resolve the issue of liner collapse have been used in this study. Two of them, the General Static Model and the Riks Static Method have been used before for similar simulations. Innovatively in this work, a non-conventional approach to finite element analysis (FEA) which makes use of hydrostatic elements has been tried for the first time. This approach has the inherent advantage of allowing the use of time-dependent material constitutive models. Three types of constitutive models were considered to model HDPE stress-strain behavior: elastic, ideal elastic-plastic and an elastic-strain hardening plastic model that takes into account the complete deformation curve determined from uniaxial tensile experiments. Validation of the simulations are made by comparing the results with analytical, or semi-analytical models and with results from previous publications. The collapse of polymeric liners in the presence of external pressure is adequately reproduced by the finite elements method (FEM) models developed. © 2011 Elsevier Ltd.
Fil: Rueda, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Otegui, Luis Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Materia
Collapse Failure
Critical Pressure
Fem Model
Polymeric Liners
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54231

id CONICETDig_53f17bda133ec765d47995d4f5f9c3cf
oai_identifier_str oai:ri.conicet.gov.ar:11336/54231
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Numerical tool to model collapse of polymeric liners in pipelinesRueda, FedericoOtegui, Luis JoseFrontini, Patricia MariaCollapse FailureCritical PressureFem ModelPolymeric Linershttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2Polymeric liners are widely used in the gas and oil transportation industry. They provide improved corrosion resistance to metallic tubes and they also are used in rehabilitation of deteriorated pipelines. Oil derived gases permeate across the liner wall; which during rapid depressurization produce external pressure that in many cases lead to buckling collapse of the liner. A number of simple models to calculate critical pressure for buckling collapse are available, but these models do not account for surface or geometrical defects that are usually present in liners under service conditions. The non-linear characteristics of the problem generate convergence issues that make it difficult for classical FEM to reproduce the actual behavior of experimental curves. This paper is concerned with simulation of the buckling collapse of HDPE liners. Three ways to raise and resolve the issue of liner collapse have been used in this study. Two of them, the General Static Model and the Riks Static Method have been used before for similar simulations. Innovatively in this work, a non-conventional approach to finite element analysis (FEA) which makes use of hydrostatic elements has been tried for the first time. This approach has the inherent advantage of allowing the use of time-dependent material constitutive models. Three types of constitutive models were considered to model HDPE stress-strain behavior: elastic, ideal elastic-plastic and an elastic-strain hardening plastic model that takes into account the complete deformation curve determined from uniaxial tensile experiments. Validation of the simulations are made by comparing the results with analytical, or semi-analytical models and with results from previous publications. The collapse of polymeric liners in the presence of external pressure is adequately reproduced by the finite elements method (FEM) models developed. © 2011 Elsevier Ltd.Fil: Rueda, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Otegui, Luis Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaPergamon-Elsevier Science Ltd2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54231Rueda, Federico; Otegui, Luis Jose; Frontini, Patricia Maria; Numerical tool to model collapse of polymeric liners in pipelines; Pergamon-Elsevier Science Ltd; Engineering Failure Analysis; 20; 3-2012; 25-341350-6307CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.engfailanal.2011.10.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S135063071100255Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:50:29Zoai:ri.conicet.gov.ar:11336/54231instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:50:29.623CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Numerical tool to model collapse of polymeric liners in pipelines
title Numerical tool to model collapse of polymeric liners in pipelines
spellingShingle Numerical tool to model collapse of polymeric liners in pipelines
Rueda, Federico
Collapse Failure
Critical Pressure
Fem Model
Polymeric Liners
title_short Numerical tool to model collapse of polymeric liners in pipelines
title_full Numerical tool to model collapse of polymeric liners in pipelines
title_fullStr Numerical tool to model collapse of polymeric liners in pipelines
title_full_unstemmed Numerical tool to model collapse of polymeric liners in pipelines
title_sort Numerical tool to model collapse of polymeric liners in pipelines
dc.creator.none.fl_str_mv Rueda, Federico
Otegui, Luis Jose
Frontini, Patricia Maria
author Rueda, Federico
author_facet Rueda, Federico
Otegui, Luis Jose
Frontini, Patricia Maria
author_role author
author2 Otegui, Luis Jose
Frontini, Patricia Maria
author2_role author
author
dc.subject.none.fl_str_mv Collapse Failure
Critical Pressure
Fem Model
Polymeric Liners
topic Collapse Failure
Critical Pressure
Fem Model
Polymeric Liners
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Polymeric liners are widely used in the gas and oil transportation industry. They provide improved corrosion resistance to metallic tubes and they also are used in rehabilitation of deteriorated pipelines. Oil derived gases permeate across the liner wall; which during rapid depressurization produce external pressure that in many cases lead to buckling collapse of the liner. A number of simple models to calculate critical pressure for buckling collapse are available, but these models do not account for surface or geometrical defects that are usually present in liners under service conditions. The non-linear characteristics of the problem generate convergence issues that make it difficult for classical FEM to reproduce the actual behavior of experimental curves. This paper is concerned with simulation of the buckling collapse of HDPE liners. Three ways to raise and resolve the issue of liner collapse have been used in this study. Two of them, the General Static Model and the Riks Static Method have been used before for similar simulations. Innovatively in this work, a non-conventional approach to finite element analysis (FEA) which makes use of hydrostatic elements has been tried for the first time. This approach has the inherent advantage of allowing the use of time-dependent material constitutive models. Three types of constitutive models were considered to model HDPE stress-strain behavior: elastic, ideal elastic-plastic and an elastic-strain hardening plastic model that takes into account the complete deformation curve determined from uniaxial tensile experiments. Validation of the simulations are made by comparing the results with analytical, or semi-analytical models and with results from previous publications. The collapse of polymeric liners in the presence of external pressure is adequately reproduced by the finite elements method (FEM) models developed. © 2011 Elsevier Ltd.
Fil: Rueda, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Otegui, Luis Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
description Polymeric liners are widely used in the gas and oil transportation industry. They provide improved corrosion resistance to metallic tubes and they also are used in rehabilitation of deteriorated pipelines. Oil derived gases permeate across the liner wall; which during rapid depressurization produce external pressure that in many cases lead to buckling collapse of the liner. A number of simple models to calculate critical pressure for buckling collapse are available, but these models do not account for surface or geometrical defects that are usually present in liners under service conditions. The non-linear characteristics of the problem generate convergence issues that make it difficult for classical FEM to reproduce the actual behavior of experimental curves. This paper is concerned with simulation of the buckling collapse of HDPE liners. Three ways to raise and resolve the issue of liner collapse have been used in this study. Two of them, the General Static Model and the Riks Static Method have been used before for similar simulations. Innovatively in this work, a non-conventional approach to finite element analysis (FEA) which makes use of hydrostatic elements has been tried for the first time. This approach has the inherent advantage of allowing the use of time-dependent material constitutive models. Three types of constitutive models were considered to model HDPE stress-strain behavior: elastic, ideal elastic-plastic and an elastic-strain hardening plastic model that takes into account the complete deformation curve determined from uniaxial tensile experiments. Validation of the simulations are made by comparing the results with analytical, or semi-analytical models and with results from previous publications. The collapse of polymeric liners in the presence of external pressure is adequately reproduced by the finite elements method (FEM) models developed. © 2011 Elsevier Ltd.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54231
Rueda, Federico; Otegui, Luis Jose; Frontini, Patricia Maria; Numerical tool to model collapse of polymeric liners in pipelines; Pergamon-Elsevier Science Ltd; Engineering Failure Analysis; 20; 3-2012; 25-34
1350-6307
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54231
identifier_str_mv Rueda, Federico; Otegui, Luis Jose; Frontini, Patricia Maria; Numerical tool to model collapse of polymeric liners in pipelines; Pergamon-Elsevier Science Ltd; Engineering Failure Analysis; 20; 3-2012; 25-34
1350-6307
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engfailanal.2011.10.003
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S135063071100255X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847977215639158784
score 13.087074