Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystems

Autores
Barraza Bernadas, Verónica Daniela; Restrepo Coupe, Natalia; Huete, Alfredo; Grings, Francisco Matias; Van Gorsel, Eva
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this study, we evaluated and compared optical and passive microwave index based retrievals of surface conductance (Gs) and evapotranspiration (ET) following the Penman-Monteith (PM) approach. The methodology was evaluated over the growing season at five FLUXNET sites in the USA and Australia encompassing three forest types, deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF) and evergreen broadleaf forest (EBF). A subset of Gs values were regressed against individual and combined indices of NDWI, EVI, and FI (microwave frequency index), and used to parameterize the PM equation for retrievals of ET (PM-Gs). For this purpose, we used MODIS (MYD09A1) and AMSR-E passive microwave data to compute the VIs. Model performance was quantitatively evaluated through comparative analysis of the regression coefficients (r2), and root mean square errors (RMSE). All indices correlated well with Gs over deciduous broadleaf forests, explaining 40-60% of Gs variations, however, the optical-based models had lower RMSE than the microwave FI model. In contrast, the FI model yielded the best performance to estimate Gs in evergreen forests (EBF and ENF). Overall, a combined microwave- optical model resulted in the best Gs estimates in these evergreen forests compared with the individual model approaches. In general, the PM-models explained more than 70% of the variance in LE with RMSE lower than 20 W/m2. Based on these results, we developed a new approach combining optical and passive microwave indices based on their spatial vs. temporal synergies to generate Gs time series. This combined optical-microwave approach produced the best ET estimates for evergreen forest and offered a robust approach for deciduous forest without sacrificing precision.
Fil: Barraza Bernadas, Verónica Daniela. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Restrepo Coupe, Natalia. University Of Technology; Australia
Fil: Huete, Alfredo. University Of Technology; Australia
Fil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Van Gorsel, Eva. CSIRO Oceans and Atmosphere Flagshi; Australia
Materia
Surface Conductance
Evapotranspiration
Microwave
Optical
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17709

id CONICETDig_528cf84a17aef2fc1b08aa210d02da2a
oai_identifier_str oai:ri.conicet.gov.ar:11336/17709
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystemsBarraza Bernadas, Verónica DanielaRestrepo Coupe, NataliaHuete, AlfredoGrings, Francisco MatiasVan Gorsel, EvaSurface ConductanceEvapotranspirationMicrowaveOpticalhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In this study, we evaluated and compared optical and passive microwave index based retrievals of surface conductance (Gs) and evapotranspiration (ET) following the Penman-Monteith (PM) approach. The methodology was evaluated over the growing season at five FLUXNET sites in the USA and Australia encompassing three forest types, deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF) and evergreen broadleaf forest (EBF). A subset of Gs values were regressed against individual and combined indices of NDWI, EVI, and FI (microwave frequency index), and used to parameterize the PM equation for retrievals of ET (PM-Gs). For this purpose, we used MODIS (MYD09A1) and AMSR-E passive microwave data to compute the VIs. Model performance was quantitatively evaluated through comparative analysis of the regression coefficients (r2), and root mean square errors (RMSE). All indices correlated well with Gs over deciduous broadleaf forests, explaining 40-60% of Gs variations, however, the optical-based models had lower RMSE than the microwave FI model. In contrast, the FI model yielded the best performance to estimate Gs in evergreen forests (EBF and ENF). Overall, a combined microwave- optical model resulted in the best Gs estimates in these evergreen forests compared with the individual model approaches. In general, the PM-models explained more than 70% of the variance in LE with RMSE lower than 20 W/m2. Based on these results, we developed a new approach combining optical and passive microwave indices based on their spatial vs. temporal synergies to generate Gs time series. This combined optical-microwave approach produced the best ET estimates for evergreen forest and offered a robust approach for deciduous forest without sacrificing precision.Fil: Barraza Bernadas, Verónica Daniela. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Restrepo Coupe, Natalia. University Of Technology; AustraliaFil: Huete, Alfredo. University Of Technology; AustraliaFil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Van Gorsel, Eva. CSIRO Oceans and Atmosphere Flagshi; AustraliaElsevier Science2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17709Barraza Bernadas, Verónica Daniela; Restrepo Coupe, Natalia; Huete, Alfredo; Grings, Francisco Matias; Van Gorsel, Eva; Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystems; Elsevier Science; Agricultural And Forest Meteorology; 213; 11-2015; 126-1370168-1923enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168192315002075info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.agrformet.2015.06.020info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:34Zoai:ri.conicet.gov.ar:11336/17709instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:34.485CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystems
title Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystems
spellingShingle Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystems
Barraza Bernadas, Verónica Daniela
Surface Conductance
Evapotranspiration
Microwave
Optical
title_short Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystems
title_full Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystems
title_fullStr Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystems
title_full_unstemmed Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystems
title_sort Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystems
dc.creator.none.fl_str_mv Barraza Bernadas, Verónica Daniela
Restrepo Coupe, Natalia
Huete, Alfredo
Grings, Francisco Matias
Van Gorsel, Eva
author Barraza Bernadas, Verónica Daniela
author_facet Barraza Bernadas, Verónica Daniela
Restrepo Coupe, Natalia
Huete, Alfredo
Grings, Francisco Matias
Van Gorsel, Eva
author_role author
author2 Restrepo Coupe, Natalia
Huete, Alfredo
Grings, Francisco Matias
Van Gorsel, Eva
author2_role author
author
author
author
dc.subject.none.fl_str_mv Surface Conductance
Evapotranspiration
Microwave
Optical
topic Surface Conductance
Evapotranspiration
Microwave
Optical
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this study, we evaluated and compared optical and passive microwave index based retrievals of surface conductance (Gs) and evapotranspiration (ET) following the Penman-Monteith (PM) approach. The methodology was evaluated over the growing season at five FLUXNET sites in the USA and Australia encompassing three forest types, deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF) and evergreen broadleaf forest (EBF). A subset of Gs values were regressed against individual and combined indices of NDWI, EVI, and FI (microwave frequency index), and used to parameterize the PM equation for retrievals of ET (PM-Gs). For this purpose, we used MODIS (MYD09A1) and AMSR-E passive microwave data to compute the VIs. Model performance was quantitatively evaluated through comparative analysis of the regression coefficients (r2), and root mean square errors (RMSE). All indices correlated well with Gs over deciduous broadleaf forests, explaining 40-60% of Gs variations, however, the optical-based models had lower RMSE than the microwave FI model. In contrast, the FI model yielded the best performance to estimate Gs in evergreen forests (EBF and ENF). Overall, a combined microwave- optical model resulted in the best Gs estimates in these evergreen forests compared with the individual model approaches. In general, the PM-models explained more than 70% of the variance in LE with RMSE lower than 20 W/m2. Based on these results, we developed a new approach combining optical and passive microwave indices based on their spatial vs. temporal synergies to generate Gs time series. This combined optical-microwave approach produced the best ET estimates for evergreen forest and offered a robust approach for deciduous forest without sacrificing precision.
Fil: Barraza Bernadas, Verónica Daniela. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Restrepo Coupe, Natalia. University Of Technology; Australia
Fil: Huete, Alfredo. University Of Technology; Australia
Fil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Van Gorsel, Eva. CSIRO Oceans and Atmosphere Flagshi; Australia
description In this study, we evaluated and compared optical and passive microwave index based retrievals of surface conductance (Gs) and evapotranspiration (ET) following the Penman-Monteith (PM) approach. The methodology was evaluated over the growing season at five FLUXNET sites in the USA and Australia encompassing three forest types, deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF) and evergreen broadleaf forest (EBF). A subset of Gs values were regressed against individual and combined indices of NDWI, EVI, and FI (microwave frequency index), and used to parameterize the PM equation for retrievals of ET (PM-Gs). For this purpose, we used MODIS (MYD09A1) and AMSR-E passive microwave data to compute the VIs. Model performance was quantitatively evaluated through comparative analysis of the regression coefficients (r2), and root mean square errors (RMSE). All indices correlated well with Gs over deciduous broadleaf forests, explaining 40-60% of Gs variations, however, the optical-based models had lower RMSE than the microwave FI model. In contrast, the FI model yielded the best performance to estimate Gs in evergreen forests (EBF and ENF). Overall, a combined microwave- optical model resulted in the best Gs estimates in these evergreen forests compared with the individual model approaches. In general, the PM-models explained more than 70% of the variance in LE with RMSE lower than 20 W/m2. Based on these results, we developed a new approach combining optical and passive microwave indices based on their spatial vs. temporal synergies to generate Gs time series. This combined optical-microwave approach produced the best ET estimates for evergreen forest and offered a robust approach for deciduous forest without sacrificing precision.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17709
Barraza Bernadas, Verónica Daniela; Restrepo Coupe, Natalia; Huete, Alfredo; Grings, Francisco Matias; Van Gorsel, Eva; Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystems; Elsevier Science; Agricultural And Forest Meteorology; 213; 11-2015; 126-137
0168-1923
url http://hdl.handle.net/11336/17709
identifier_str_mv Barraza Bernadas, Verónica Daniela; Restrepo Coupe, Natalia; Huete, Alfredo; Grings, Francisco Matias; Van Gorsel, Eva; Passive microwave and optical Index approaches for estimating surface conductance and evapotranspiration in forest ecosystems; Elsevier Science; Agricultural And Forest Meteorology; 213; 11-2015; 126-137
0168-1923
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168192315002075
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.agrformet.2015.06.020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614314008248320
score 13.070432