Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors

Autores
Häder, Donat P.; Williamson, Craig E.; Wängberg, Sten Åke; Rautio, Milla; Rose, Kevin C.; Gao, Kunshan; Helbling, Eduardo Walter; Sinha, Rajeshwar P.; Worrest, Robert
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Interactions between climate change and UV radiation are having strong effects on aquatic ecosystems due to feedback between temperature, UV radiation, and greenhouse gas concentration. Higher air temperatures and incoming solar radiation are increasing the surface water temperatures of lakes and oceans, with many large lakes warming at twice the rate of regional air temperatures. Warmer oceans are changing habitats and the species composition of many marine ecosystems. For some, such as corals, the temperatures may become too high. Temperature differences between surface and deep waters are becoming greater. This increase in thermal stratification makes the surface layers shallower and leads to stronger barriers to upward mixing of nutrients necessary for photosynthesis. This also results in exposure to higher levels of UV radiation of surface-dwelling organisms. In polar and alpine regions decreases in the duration and amount of snow and ice cover on lakes and oceans are also increasing exposure to UV radiation. In contrast, in lakes and coastal oceans the concentration and colour of UV-absorbing dissolved organic matter (DOM) from terrestrial ecosystems is increasing with greater runoff from higher precipitation and more frequent extreme storms. DOM thus creates a refuge from UV radiation that can enable UV-sensitive species to become established. At the same time, decreased UV radiation in such surface waters reduces the capacity of solar UV radiation to inactivate viruses and other pathogens and parasites, and increases the difficulty and price of purifying drinking water for municipal supplies. Solar UV radiation breaks down the DOM, making it more available for microbial processing, resulting in the release of greenhouse gases into the atmosphere. In addition to screening solar irradiance, DOM, when sunlit in surface water, can lead to the formation of reactive oxygen species (ROS). Increases in carbon dioxide are in turn acidifying the oceans and inhibiting the ability of many marine organisms to form UV-absorbing exoskeletons. Many aquatic organisms use adaptive strategies to mitigate the effects of solar UV-B radiation (280–315 nm), including vertical migration, crust formation, synthesis of UV-absorbing substances, and enzymatic and non-enzymatic quenching of ROS. Whether or not genetic adaptation to changes in the abiotic factors plays a role in mitigating stress and damage has not been determined. This assessment addresses how our knowledge of the interactive effects of UV radiation and climate change factors on aquatic ecosystems has advanced in the past four years.
Fil: Häder, Donat P.. Universitat Erlangen-Nuremberg; Alemania
Fil: Williamson, Craig E.. Miami University; Estados Unidos
Fil: Wängberg, Sten Åke. University of Gothenburg. Department of Biological and Environmental Science; Suecia
Fil: Rautio, Milla. Université du Québec à Chicoutimi. Département des Sciences Fondamentales and Centre for Northern Studies; Canadá
Fil: Rose, Kevin C.. University Of Wisconsin; Estados Unidos
Fil: Gao, Kunshan. Xiamen University. State Key Laboratory of Marine Environmental Science; China
Fil: Helbling, Eduardo Walter. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina
Fil: Sinha, Rajeshwar P.. Banaras Hindu University. Centre of Advanced Study in Botany; India
Fil: Worrest, Robert. Columbia University; Estados Unidos
Materia
UVR
AQUTIC ECOSYSTEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5634

id CONICETDig_51bb3514bea52db6d654777bbbb260e1
oai_identifier_str oai:ri.conicet.gov.ar:11336/5634
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effects of UV radiation on aquatic ecosystems and interactions with other environmental factorsHäder, Donat P.Williamson, Craig E.Wängberg, Sten ÅkeRautio, MillaRose, Kevin C.Gao, KunshanHelbling, Eduardo WalterSinha, Rajeshwar P.Worrest, RobertUVRAQUTIC ECOSYSTEMShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Interactions between climate change and UV radiation are having strong effects on aquatic ecosystems due to feedback between temperature, UV radiation, and greenhouse gas concentration. Higher air temperatures and incoming solar radiation are increasing the surface water temperatures of lakes and oceans, with many large lakes warming at twice the rate of regional air temperatures. Warmer oceans are changing habitats and the species composition of many marine ecosystems. For some, such as corals, the temperatures may become too high. Temperature differences between surface and deep waters are becoming greater. This increase in thermal stratification makes the surface layers shallower and leads to stronger barriers to upward mixing of nutrients necessary for photosynthesis. This also results in exposure to higher levels of UV radiation of surface-dwelling organisms. In polar and alpine regions decreases in the duration and amount of snow and ice cover on lakes and oceans are also increasing exposure to UV radiation. In contrast, in lakes and coastal oceans the concentration and colour of UV-absorbing dissolved organic matter (DOM) from terrestrial ecosystems is increasing with greater runoff from higher precipitation and more frequent extreme storms. DOM thus creates a refuge from UV radiation that can enable UV-sensitive species to become established. At the same time, decreased UV radiation in such surface waters reduces the capacity of solar UV radiation to inactivate viruses and other pathogens and parasites, and increases the difficulty and price of purifying drinking water for municipal supplies. Solar UV radiation breaks down the DOM, making it more available for microbial processing, resulting in the release of greenhouse gases into the atmosphere. In addition to screening solar irradiance, DOM, when sunlit in surface water, can lead to the formation of reactive oxygen species (ROS). Increases in carbon dioxide are in turn acidifying the oceans and inhibiting the ability of many marine organisms to form UV-absorbing exoskeletons. Many aquatic organisms use adaptive strategies to mitigate the effects of solar UV-B radiation (280–315 nm), including vertical migration, crust formation, synthesis of UV-absorbing substances, and enzymatic and non-enzymatic quenching of ROS. Whether or not genetic adaptation to changes in the abiotic factors plays a role in mitigating stress and damage has not been determined. This assessment addresses how our knowledge of the interactive effects of UV radiation and climate change factors on aquatic ecosystems has advanced in the past four years.Fil: Häder, Donat P.. Universitat Erlangen-Nuremberg; AlemaniaFil: Williamson, Craig E.. Miami University; Estados UnidosFil: Wängberg, Sten Åke. University of Gothenburg. Department of Biological and Environmental Science; SueciaFil: Rautio, Milla. Université du Québec à Chicoutimi. Département des Sciences Fondamentales and Centre for Northern Studies; CanadáFil: Rose, Kevin C.. University Of Wisconsin; Estados UnidosFil: Gao, Kunshan. Xiamen University. State Key Laboratory of Marine Environmental Science; ChinaFil: Helbling, Eduardo Walter. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Sinha, Rajeshwar P.. Banaras Hindu University. Centre of Advanced Study in Botany; IndiaFil: Worrest, Robert. Columbia University; Estados UnidosRoyal Society of Chemistry2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5634Häder, Donat P.; Williamson, Craig E.; Wängberg, Sten Åke; Rautio, Milla; Rose, Kevin C.; et al.; Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors; Royal Society of Chemistry; Photochemical and Photobiological Sciences; 14; 1; 1-2015; 108-1261474-905Xenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2015/PP/C4PP90035A#!divAbstractinfo:eu-repo/semantics/altIdentifier/doi/10.1039/C4PP90035Ainfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:09Zoai:ri.conicet.gov.ar:11336/5634instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:10.009CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors
title Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors
spellingShingle Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors
Häder, Donat P.
UVR
AQUTIC ECOSYSTEMS
title_short Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors
title_full Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors
title_fullStr Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors
title_full_unstemmed Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors
title_sort Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors
dc.creator.none.fl_str_mv Häder, Donat P.
Williamson, Craig E.
Wängberg, Sten Åke
Rautio, Milla
Rose, Kevin C.
Gao, Kunshan
Helbling, Eduardo Walter
Sinha, Rajeshwar P.
Worrest, Robert
author Häder, Donat P.
author_facet Häder, Donat P.
Williamson, Craig E.
Wängberg, Sten Åke
Rautio, Milla
Rose, Kevin C.
Gao, Kunshan
Helbling, Eduardo Walter
Sinha, Rajeshwar P.
Worrest, Robert
author_role author
author2 Williamson, Craig E.
Wängberg, Sten Åke
Rautio, Milla
Rose, Kevin C.
Gao, Kunshan
Helbling, Eduardo Walter
Sinha, Rajeshwar P.
Worrest, Robert
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv UVR
AQUTIC ECOSYSTEMS
topic UVR
AQUTIC ECOSYSTEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Interactions between climate change and UV radiation are having strong effects on aquatic ecosystems due to feedback between temperature, UV radiation, and greenhouse gas concentration. Higher air temperatures and incoming solar radiation are increasing the surface water temperatures of lakes and oceans, with many large lakes warming at twice the rate of regional air temperatures. Warmer oceans are changing habitats and the species composition of many marine ecosystems. For some, such as corals, the temperatures may become too high. Temperature differences between surface and deep waters are becoming greater. This increase in thermal stratification makes the surface layers shallower and leads to stronger barriers to upward mixing of nutrients necessary for photosynthesis. This also results in exposure to higher levels of UV radiation of surface-dwelling organisms. In polar and alpine regions decreases in the duration and amount of snow and ice cover on lakes and oceans are also increasing exposure to UV radiation. In contrast, in lakes and coastal oceans the concentration and colour of UV-absorbing dissolved organic matter (DOM) from terrestrial ecosystems is increasing with greater runoff from higher precipitation and more frequent extreme storms. DOM thus creates a refuge from UV radiation that can enable UV-sensitive species to become established. At the same time, decreased UV radiation in such surface waters reduces the capacity of solar UV radiation to inactivate viruses and other pathogens and parasites, and increases the difficulty and price of purifying drinking water for municipal supplies. Solar UV radiation breaks down the DOM, making it more available for microbial processing, resulting in the release of greenhouse gases into the atmosphere. In addition to screening solar irradiance, DOM, when sunlit in surface water, can lead to the formation of reactive oxygen species (ROS). Increases in carbon dioxide are in turn acidifying the oceans and inhibiting the ability of many marine organisms to form UV-absorbing exoskeletons. Many aquatic organisms use adaptive strategies to mitigate the effects of solar UV-B radiation (280–315 nm), including vertical migration, crust formation, synthesis of UV-absorbing substances, and enzymatic and non-enzymatic quenching of ROS. Whether or not genetic adaptation to changes in the abiotic factors plays a role in mitigating stress and damage has not been determined. This assessment addresses how our knowledge of the interactive effects of UV radiation and climate change factors on aquatic ecosystems has advanced in the past four years.
Fil: Häder, Donat P.. Universitat Erlangen-Nuremberg; Alemania
Fil: Williamson, Craig E.. Miami University; Estados Unidos
Fil: Wängberg, Sten Åke. University of Gothenburg. Department of Biological and Environmental Science; Suecia
Fil: Rautio, Milla. Université du Québec à Chicoutimi. Département des Sciences Fondamentales and Centre for Northern Studies; Canadá
Fil: Rose, Kevin C.. University Of Wisconsin; Estados Unidos
Fil: Gao, Kunshan. Xiamen University. State Key Laboratory of Marine Environmental Science; China
Fil: Helbling, Eduardo Walter. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina
Fil: Sinha, Rajeshwar P.. Banaras Hindu University. Centre of Advanced Study in Botany; India
Fil: Worrest, Robert. Columbia University; Estados Unidos
description Interactions between climate change and UV radiation are having strong effects on aquatic ecosystems due to feedback between temperature, UV radiation, and greenhouse gas concentration. Higher air temperatures and incoming solar radiation are increasing the surface water temperatures of lakes and oceans, with many large lakes warming at twice the rate of regional air temperatures. Warmer oceans are changing habitats and the species composition of many marine ecosystems. For some, such as corals, the temperatures may become too high. Temperature differences between surface and deep waters are becoming greater. This increase in thermal stratification makes the surface layers shallower and leads to stronger barriers to upward mixing of nutrients necessary for photosynthesis. This also results in exposure to higher levels of UV radiation of surface-dwelling organisms. In polar and alpine regions decreases in the duration and amount of snow and ice cover on lakes and oceans are also increasing exposure to UV radiation. In contrast, in lakes and coastal oceans the concentration and colour of UV-absorbing dissolved organic matter (DOM) from terrestrial ecosystems is increasing with greater runoff from higher precipitation and more frequent extreme storms. DOM thus creates a refuge from UV radiation that can enable UV-sensitive species to become established. At the same time, decreased UV radiation in such surface waters reduces the capacity of solar UV radiation to inactivate viruses and other pathogens and parasites, and increases the difficulty and price of purifying drinking water for municipal supplies. Solar UV radiation breaks down the DOM, making it more available for microbial processing, resulting in the release of greenhouse gases into the atmosphere. In addition to screening solar irradiance, DOM, when sunlit in surface water, can lead to the formation of reactive oxygen species (ROS). Increases in carbon dioxide are in turn acidifying the oceans and inhibiting the ability of many marine organisms to form UV-absorbing exoskeletons. Many aquatic organisms use adaptive strategies to mitigate the effects of solar UV-B radiation (280–315 nm), including vertical migration, crust formation, synthesis of UV-absorbing substances, and enzymatic and non-enzymatic quenching of ROS. Whether or not genetic adaptation to changes in the abiotic factors plays a role in mitigating stress and damage has not been determined. This assessment addresses how our knowledge of the interactive effects of UV radiation and climate change factors on aquatic ecosystems has advanced in the past four years.
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5634
Häder, Donat P.; Williamson, Craig E.; Wängberg, Sten Åke; Rautio, Milla; Rose, Kevin C.; et al.; Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors; Royal Society of Chemistry; Photochemical and Photobiological Sciences; 14; 1; 1-2015; 108-126
1474-905X
url http://hdl.handle.net/11336/5634
identifier_str_mv Häder, Donat P.; Williamson, Craig E.; Wängberg, Sten Åke; Rautio, Milla; Rose, Kevin C.; et al.; Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors; Royal Society of Chemistry; Photochemical and Photobiological Sciences; 14; 1; 1-2015; 108-126
1474-905X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2015/PP/C4PP90035A#!divAbstract
info:eu-repo/semantics/altIdentifier/doi/10.1039/C4PP90035A
info:eu-repo/semantics/altIdentifier/doi/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613780079640576
score 13.070432