Learning latent jet structure
- Autores
- Dillon, Barry M.; Faroughy, Darius A.; Kamenik, Jernej F.; Szewc, Manuel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Allocation. Using a mixed sample of QCD and boosted tt jet events and focusing on the primary Lund plane observable basis for event measurements, we show how using educated priors on the latent distributions allows to infer on the underlying physical processes in a semi-supervised way.
Fil: Dillon, Barry M.. Ruprecht Karls Universitat Heidelberg. Fakultat für Physik and Astronomie; Alemania
Fil: Faroughy, Darius A.. Universitat Zurich; Suiza
Fil: Kamenik, Jernej F.. University of Ljubljana; Eslovenia. Jožef Stefan Institute; Eslovenia
Fil: Szewc, Manuel. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
BAYESIAN SEMI-SUPERVISED LEARNING
JET SUBSTRUCTURE ANALYSIS
QCD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/154467
Ver los metadatos del registro completo
| id |
CONICETDig_501045051177f85740687fb0c019eaf5 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/154467 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Learning latent jet structureDillon, Barry M.Faroughy, Darius A.Kamenik, Jernej F.Szewc, ManuelBAYESIAN SEMI-SUPERVISED LEARNINGJET SUBSTRUCTURE ANALYSISQCDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Allocation. Using a mixed sample of QCD and boosted tt jet events and focusing on the primary Lund plane observable basis for event measurements, we show how using educated priors on the latent distributions allows to infer on the underlying physical processes in a semi-supervised way.Fil: Dillon, Barry M.. Ruprecht Karls Universitat Heidelberg. Fakultat für Physik and Astronomie; AlemaniaFil: Faroughy, Darius A.. Universitat Zurich; SuizaFil: Kamenik, Jernej F.. University of Ljubljana; Eslovenia. Jožef Stefan Institute; EsloveniaFil: Szewc, Manuel. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMultidisciplinary Digital Publishing Institute2021-06-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154467Dillon, Barry M.; Faroughy, Darius A.; Kamenik, Jernej F.; Szewc, Manuel; Learning latent jet structure; Multidisciplinary Digital Publishing Institute; Symmetry; 13; 7; 29-6-2021; 1-112073-8994CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/sym13071167info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-8994/13/7/1167info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:04:46Zoai:ri.conicet.gov.ar:11336/154467instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:04:46.924CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Learning latent jet structure |
| title |
Learning latent jet structure |
| spellingShingle |
Learning latent jet structure Dillon, Barry M. BAYESIAN SEMI-SUPERVISED LEARNING JET SUBSTRUCTURE ANALYSIS QCD |
| title_short |
Learning latent jet structure |
| title_full |
Learning latent jet structure |
| title_fullStr |
Learning latent jet structure |
| title_full_unstemmed |
Learning latent jet structure |
| title_sort |
Learning latent jet structure |
| dc.creator.none.fl_str_mv |
Dillon, Barry M. Faroughy, Darius A. Kamenik, Jernej F. Szewc, Manuel |
| author |
Dillon, Barry M. |
| author_facet |
Dillon, Barry M. Faroughy, Darius A. Kamenik, Jernej F. Szewc, Manuel |
| author_role |
author |
| author2 |
Faroughy, Darius A. Kamenik, Jernej F. Szewc, Manuel |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
BAYESIAN SEMI-SUPERVISED LEARNING JET SUBSTRUCTURE ANALYSIS QCD |
| topic |
BAYESIAN SEMI-SUPERVISED LEARNING JET SUBSTRUCTURE ANALYSIS QCD |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Allocation. Using a mixed sample of QCD and boosted tt jet events and focusing on the primary Lund plane observable basis for event measurements, we show how using educated priors on the latent distributions allows to infer on the underlying physical processes in a semi-supervised way. Fil: Dillon, Barry M.. Ruprecht Karls Universitat Heidelberg. Fakultat für Physik and Astronomie; Alemania Fil: Faroughy, Darius A.. Universitat Zurich; Suiza Fil: Kamenik, Jernej F.. University of Ljubljana; Eslovenia. Jožef Stefan Institute; Eslovenia Fil: Szewc, Manuel. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Allocation. Using a mixed sample of QCD and boosted tt jet events and focusing on the primary Lund plane observable basis for event measurements, we show how using educated priors on the latent distributions allows to infer on the underlying physical processes in a semi-supervised way. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-06-29 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/154467 Dillon, Barry M.; Faroughy, Darius A.; Kamenik, Jernej F.; Szewc, Manuel; Learning latent jet structure; Multidisciplinary Digital Publishing Institute; Symmetry; 13; 7; 29-6-2021; 1-11 2073-8994 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/154467 |
| identifier_str_mv |
Dillon, Barry M.; Faroughy, Darius A.; Kamenik, Jernej F.; Szewc, Manuel; Learning latent jet structure; Multidisciplinary Digital Publishing Institute; Symmetry; 13; 7; 29-6-2021; 1-11 2073-8994 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/sym13071167 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-8994/13/7/1167 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782398529798144 |
| score |
12.982451 |