On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers
- Autores
- Collier, N.; Dalcin, Lisandro Daniel; Calo, V.M.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- SUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits.
Fil: Collier, N.. King Abdullah University Of Science And Technology; Arabia Saudita
Fil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Calo, V.M.. King Abdullah University Of Science And Technology; Arabia Saudita - Materia
-
Asymptotic Analysis
Collocation
Computational Efficiency
Finite Elements
Isogeometric - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/78604
Ver los metadatos del registro completo
id |
CONICETDig_4ffcfb40c74517eb0e16b9ff19bae5bb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/78604 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solversCollier, N.Dalcin, Lisandro DanielCalo, V.M.Asymptotic AnalysisCollocationComputational EfficiencyFinite ElementsIsogeometricSUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits.Fil: Collier, N.. King Abdullah University Of Science And Technology; Arabia SauditaFil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Calo, V.M.. King Abdullah University Of Science And Technology; Arabia SauditaJohn Wiley & Sons Ltd2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78604Collier, N.; Dalcin, Lisandro Daniel; Calo, V.M.; On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 100; 8; 11-2014; 620-6320029-5981CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/nme.4769info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:21Zoai:ri.conicet.gov.ar:11336/78604instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:21.776CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers |
title |
On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers |
spellingShingle |
On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers Collier, N. Asymptotic Analysis Collocation Computational Efficiency Finite Elements Isogeometric |
title_short |
On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers |
title_full |
On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers |
title_fullStr |
On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers |
title_full_unstemmed |
On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers |
title_sort |
On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers |
dc.creator.none.fl_str_mv |
Collier, N. Dalcin, Lisandro Daniel Calo, V.M. |
author |
Collier, N. |
author_facet |
Collier, N. Dalcin, Lisandro Daniel Calo, V.M. |
author_role |
author |
author2 |
Dalcin, Lisandro Daniel Calo, V.M. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Asymptotic Analysis Collocation Computational Efficiency Finite Elements Isogeometric |
topic |
Asymptotic Analysis Collocation Computational Efficiency Finite Elements Isogeometric |
dc.description.none.fl_txt_mv |
SUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits. Fil: Collier, N.. King Abdullah University Of Science And Technology; Arabia Saudita Fil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Calo, V.M.. King Abdullah University Of Science And Technology; Arabia Saudita |
description |
SUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/78604 Collier, N.; Dalcin, Lisandro Daniel; Calo, V.M.; On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 100; 8; 11-2014; 620-632 0029-5981 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/78604 |
identifier_str_mv |
Collier, N.; Dalcin, Lisandro Daniel; Calo, V.M.; On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 100; 8; 11-2014; 620-632 0029-5981 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/nme.4769 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613932606554112 |
score |
13.070432 |