On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers

Autores
Collier, N.; Dalcin, Lisandro Daniel; Calo, V.M.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
SUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits.
Fil: Collier, N.. King Abdullah University Of Science And Technology; Arabia Saudita
Fil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Calo, V.M.. King Abdullah University Of Science And Technology; Arabia Saudita
Materia
Asymptotic Analysis
Collocation
Computational Efficiency
Finite Elements
Isogeometric
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/78604

id CONICETDig_4ffcfb40c74517eb0e16b9ff19bae5bb
oai_identifier_str oai:ri.conicet.gov.ar:11336/78604
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solversCollier, N.Dalcin, Lisandro DanielCalo, V.M.Asymptotic AnalysisCollocationComputational EfficiencyFinite ElementsIsogeometricSUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits.Fil: Collier, N.. King Abdullah University Of Science And Technology; Arabia SauditaFil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Calo, V.M.. King Abdullah University Of Science And Technology; Arabia SauditaJohn Wiley & Sons Ltd2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78604Collier, N.; Dalcin, Lisandro Daniel; Calo, V.M.; On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 100; 8; 11-2014; 620-6320029-5981CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/nme.4769info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:21Zoai:ri.conicet.gov.ar:11336/78604instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:21.776CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers
title On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers
spellingShingle On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers
Collier, N.
Asymptotic Analysis
Collocation
Computational Efficiency
Finite Elements
Isogeometric
title_short On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers
title_full On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers
title_fullStr On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers
title_full_unstemmed On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers
title_sort On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers
dc.creator.none.fl_str_mv Collier, N.
Dalcin, Lisandro Daniel
Calo, V.M.
author Collier, N.
author_facet Collier, N.
Dalcin, Lisandro Daniel
Calo, V.M.
author_role author
author2 Dalcin, Lisandro Daniel
Calo, V.M.
author2_role author
author
dc.subject.none.fl_str_mv Asymptotic Analysis
Collocation
Computational Efficiency
Finite Elements
Isogeometric
topic Asymptotic Analysis
Collocation
Computational Efficiency
Finite Elements
Isogeometric
dc.description.none.fl_txt_mv SUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits.
Fil: Collier, N.. King Abdullah University Of Science And Technology; Arabia Saudita
Fil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Calo, V.M.. King Abdullah University Of Science And Technology; Arabia Saudita
description SUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/78604
Collier, N.; Dalcin, Lisandro Daniel; Calo, V.M.; On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 100; 8; 11-2014; 620-632
0029-5981
CONICET Digital
CONICET
url http://hdl.handle.net/11336/78604
identifier_str_mv Collier, N.; Dalcin, Lisandro Daniel; Calo, V.M.; On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 100; 8; 11-2014; 620-632
0029-5981
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/nme.4769
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613932606554112
score 13.070432