Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device
- Autores
- Jezek, Dora Marta; Cataldo, Horacio Maximo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- By means of a two-mode model, we show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system, which consists of a toroidal condensate with two diametrically placed barriers. Such a configuration corresponds to the atomtronic counterpart of the well-known direct-current superconducting quantum interference device. Due to the phase gradient experimented by the on-site localized functions when the system is subject to rotation, a phase difference appears on each junction in order to satisfy the quantization of the velocity field around the torus. We demonstrate that such a phase can produce a significant change on the relative values of different types of hopping parameters. In particular, we show that within a determined rotation frequency interval a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics. At the limits of such a frequency interval, bifurcations of the stationary points occur, which substantially change the phase-space portrait that describes the orbits of the macroscopic canonical conjugate variables. We analyze the emerging dynamics that combines the zero and π Josephson modes, and evaluate the small-oscillation time periods of such orbits at the frequency range where each mode survives. All the findings predicted by the model are confirmed by Gross-Pitaevskii simulations.
Fil: Jezek, Dora Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Cataldo, Horacio Maximo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
- BOSE-EINSTEIN
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/182117
Ver los metadatos del registro completo
id |
CONICETDig_4edf372c1a366185eccf606a6bd3d8d9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/182117 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference deviceJezek, Dora MartaCataldo, Horacio MaximoBOSE-EINSTEINhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1By means of a two-mode model, we show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system, which consists of a toroidal condensate with two diametrically placed barriers. Such a configuration corresponds to the atomtronic counterpart of the well-known direct-current superconducting quantum interference device. Due to the phase gradient experimented by the on-site localized functions when the system is subject to rotation, a phase difference appears on each junction in order to satisfy the quantization of the velocity field around the torus. We demonstrate that such a phase can produce a significant change on the relative values of different types of hopping parameters. In particular, we show that within a determined rotation frequency interval a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics. At the limits of such a frequency interval, bifurcations of the stationary points occur, which substantially change the phase-space portrait that describes the orbits of the macroscopic canonical conjugate variables. We analyze the emerging dynamics that combines the zero and π Josephson modes, and evaluate the small-oscillation time periods of such orbits at the frequency range where each mode survives. All the findings predicted by the model are confirmed by Gross-Pitaevskii simulations.Fil: Jezek, Dora Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Cataldo, Horacio Maximo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182117Jezek, Dora Marta; Cataldo, Horacio Maximo; Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device; American Physical Society; Physical Review A; 104; 5; 11-2021; 1-102469-99262469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.104.053319info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:59Zoai:ri.conicet.gov.ar:11336/182117instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:00.228CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device |
title |
Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device |
spellingShingle |
Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device Jezek, Dora Marta BOSE-EINSTEIN |
title_short |
Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device |
title_full |
Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device |
title_fullStr |
Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device |
title_full_unstemmed |
Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device |
title_sort |
Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device |
dc.creator.none.fl_str_mv |
Jezek, Dora Marta Cataldo, Horacio Maximo |
author |
Jezek, Dora Marta |
author_facet |
Jezek, Dora Marta Cataldo, Horacio Maximo |
author_role |
author |
author2 |
Cataldo, Horacio Maximo |
author2_role |
author |
dc.subject.none.fl_str_mv |
BOSE-EINSTEIN |
topic |
BOSE-EINSTEIN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
By means of a two-mode model, we show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system, which consists of a toroidal condensate with two diametrically placed barriers. Such a configuration corresponds to the atomtronic counterpart of the well-known direct-current superconducting quantum interference device. Due to the phase gradient experimented by the on-site localized functions when the system is subject to rotation, a phase difference appears on each junction in order to satisfy the quantization of the velocity field around the torus. We demonstrate that such a phase can produce a significant change on the relative values of different types of hopping parameters. In particular, we show that within a determined rotation frequency interval a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics. At the limits of such a frequency interval, bifurcations of the stationary points occur, which substantially change the phase-space portrait that describes the orbits of the macroscopic canonical conjugate variables. We analyze the emerging dynamics that combines the zero and π Josephson modes, and evaluate the small-oscillation time periods of such orbits at the frequency range where each mode survives. All the findings predicted by the model are confirmed by Gross-Pitaevskii simulations. Fil: Jezek, Dora Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Cataldo, Horacio Maximo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
By means of a two-mode model, we show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system, which consists of a toroidal condensate with two diametrically placed barriers. Such a configuration corresponds to the atomtronic counterpart of the well-known direct-current superconducting quantum interference device. Due to the phase gradient experimented by the on-site localized functions when the system is subject to rotation, a phase difference appears on each junction in order to satisfy the quantization of the velocity field around the torus. We demonstrate that such a phase can produce a significant change on the relative values of different types of hopping parameters. In particular, we show that within a determined rotation frequency interval a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics. At the limits of such a frequency interval, bifurcations of the stationary points occur, which substantially change the phase-space portrait that describes the orbits of the macroscopic canonical conjugate variables. We analyze the emerging dynamics that combines the zero and π Josephson modes, and evaluate the small-oscillation time periods of such orbits at the frequency range where each mode survives. All the findings predicted by the model are confirmed by Gross-Pitaevskii simulations. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/182117 Jezek, Dora Marta; Cataldo, Horacio Maximo; Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device; American Physical Society; Physical Review A; 104; 5; 11-2021; 1-10 2469-9926 2469-9934 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/182117 |
identifier_str_mv |
Jezek, Dora Marta; Cataldo, Horacio Maximo; Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device; American Physical Society; Physical Review A; 104; 5; 11-2021; 1-10 2469-9926 2469-9934 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.104.053319 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614512867540992 |
score |
13.070432 |