Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device

Autores
Jezek, Dora Marta; Cataldo, Horacio Maximo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
By means of a two-mode model, we show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system, which consists of a toroidal condensate with two diametrically placed barriers. Such a configuration corresponds to the atomtronic counterpart of the well-known direct-current superconducting quantum interference device. Due to the phase gradient experimented by the on-site localized functions when the system is subject to rotation, a phase difference appears on each junction in order to satisfy the quantization of the velocity field around the torus. We demonstrate that such a phase can produce a significant change on the relative values of different types of hopping parameters. In particular, we show that within a determined rotation frequency interval a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics. At the limits of such a frequency interval, bifurcations of the stationary points occur, which substantially change the phase-space portrait that describes the orbits of the macroscopic canonical conjugate variables. We analyze the emerging dynamics that combines the zero and π Josephson modes, and evaluate the small-oscillation time periods of such orbits at the frequency range where each mode survives. All the findings predicted by the model are confirmed by Gross-Pitaevskii simulations.
Fil: Jezek, Dora Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Cataldo, Horacio Maximo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
BOSE-EINSTEIN
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/182117

id CONICETDig_4edf372c1a366185eccf606a6bd3d8d9
oai_identifier_str oai:ri.conicet.gov.ar:11336/182117
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference deviceJezek, Dora MartaCataldo, Horacio MaximoBOSE-EINSTEINhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1By means of a two-mode model, we show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system, which consists of a toroidal condensate with two diametrically placed barriers. Such a configuration corresponds to the atomtronic counterpart of the well-known direct-current superconducting quantum interference device. Due to the phase gradient experimented by the on-site localized functions when the system is subject to rotation, a phase difference appears on each junction in order to satisfy the quantization of the velocity field around the torus. We demonstrate that such a phase can produce a significant change on the relative values of different types of hopping parameters. In particular, we show that within a determined rotation frequency interval a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics. At the limits of such a frequency interval, bifurcations of the stationary points occur, which substantially change the phase-space portrait that describes the orbits of the macroscopic canonical conjugate variables. We analyze the emerging dynamics that combines the zero and π Josephson modes, and evaluate the small-oscillation time periods of such orbits at the frequency range where each mode survives. All the findings predicted by the model are confirmed by Gross-Pitaevskii simulations.Fil: Jezek, Dora Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Cataldo, Horacio Maximo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182117Jezek, Dora Marta; Cataldo, Horacio Maximo; Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device; American Physical Society; Physical Review A; 104; 5; 11-2021; 1-102469-99262469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.104.053319info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:59Zoai:ri.conicet.gov.ar:11336/182117instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:00.228CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device
title Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device
spellingShingle Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device
Jezek, Dora Marta
BOSE-EINSTEIN
title_short Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device
title_full Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device
title_fullStr Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device
title_full_unstemmed Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device
title_sort Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device
dc.creator.none.fl_str_mv Jezek, Dora Marta
Cataldo, Horacio Maximo
author Jezek, Dora Marta
author_facet Jezek, Dora Marta
Cataldo, Horacio Maximo
author_role author
author2 Cataldo, Horacio Maximo
author2_role author
dc.subject.none.fl_str_mv BOSE-EINSTEIN
topic BOSE-EINSTEIN
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv By means of a two-mode model, we show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system, which consists of a toroidal condensate with two diametrically placed barriers. Such a configuration corresponds to the atomtronic counterpart of the well-known direct-current superconducting quantum interference device. Due to the phase gradient experimented by the on-site localized functions when the system is subject to rotation, a phase difference appears on each junction in order to satisfy the quantization of the velocity field around the torus. We demonstrate that such a phase can produce a significant change on the relative values of different types of hopping parameters. In particular, we show that within a determined rotation frequency interval a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics. At the limits of such a frequency interval, bifurcations of the stationary points occur, which substantially change the phase-space portrait that describes the orbits of the macroscopic canonical conjugate variables. We analyze the emerging dynamics that combines the zero and π Josephson modes, and evaluate the small-oscillation time periods of such orbits at the frequency range where each mode survives. All the findings predicted by the model are confirmed by Gross-Pitaevskii simulations.
Fil: Jezek, Dora Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Cataldo, Horacio Maximo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description By means of a two-mode model, we show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system, which consists of a toroidal condensate with two diametrically placed barriers. Such a configuration corresponds to the atomtronic counterpart of the well-known direct-current superconducting quantum interference device. Due to the phase gradient experimented by the on-site localized functions when the system is subject to rotation, a phase difference appears on each junction in order to satisfy the quantization of the velocity field around the torus. We demonstrate that such a phase can produce a significant change on the relative values of different types of hopping parameters. In particular, we show that within a determined rotation frequency interval a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics. At the limits of such a frequency interval, bifurcations of the stationary points occur, which substantially change the phase-space portrait that describes the orbits of the macroscopic canonical conjugate variables. We analyze the emerging dynamics that combines the zero and π Josephson modes, and evaluate the small-oscillation time periods of such orbits at the frequency range where each mode survives. All the findings predicted by the model are confirmed by Gross-Pitaevskii simulations.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/182117
Jezek, Dora Marta; Cataldo, Horacio Maximo; Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device; American Physical Society; Physical Review A; 104; 5; 11-2021; 1-10
2469-9926
2469-9934
CONICET Digital
CONICET
url http://hdl.handle.net/11336/182117
identifier_str_mv Jezek, Dora Marta; Cataldo, Horacio Maximo; Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting quantum interference device; American Physical Society; Physical Review A; 104; 5; 11-2021; 1-10
2469-9926
2469-9934
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.104.053319
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614512867540992
score 13.070432