Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape

Autores
Anders, Christian; Bringa, Eduardo Marcial; Fioretti, Fabricio D.; Ziegenhain, Gerolf; Urbassek, Herbert M.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present molecular-dynamics simulations of cratering induced by projectiles containing N ∼= 10–106 atoms in the velocity regime of 1–70 km/s. Self-bombardment of a condensed Ar and a Cu target are studied. We corroborate the earlier finding that for small clusters, N 1000, above a threshold regime, the crater volume scales linearly with the total impact energy E; by scaling energies to the target cohesive energy U, crater volumes of such diverse materials as condensed Ar and Cu coincide. At threshold Eth, craters are shallow. They become hemispheric at energies ∼5Eth. Part of the material excavated from the crater is sputtered. This fraction decreases with cluster size N. Relatively less material is sputtered from an Ar target than from a Cu target. Larger cluster impact, which we simulate up to N = 3 × 106, shows a stronger size effect, such that the resulting craters increase slightly more than linearly with total energy. This finding is discussed in light of available experimental data for μm- and mm-sized projectiles. Simulations on ductile samples containing pre-existing defects (nanocracks) show that such pre-existing damage plays a negligible role for crater formation and size in metals.
Fil: Anders, Christian. University Kaiserslautern. Physics Department and Research Center OPTIMAS; Alemania
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Fioretti, Fabricio D.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Ziegenhain, Gerolf. University Kaiserslautern. Physics Department and Research Center OPTIMAS; Alemania
Fil: Urbassek, Herbert M.. University Kaiserslautern. Physics Department and Research Center OPTIMAS; Alemania
Materia
Nanocracks
Crater Formation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18164

id CONICETDig_4ea898357a72763d9256df0be9b6eced
oai_identifier_str oai:ri.conicet.gov.ar:11336/18164
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shapeAnders, ChristianBringa, Eduardo MarcialFioretti, Fabricio D.Ziegenhain, GerolfUrbassek, Herbert M.NanocracksCrater Formationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present molecular-dynamics simulations of cratering induced by projectiles containing N ∼= 10–106 atoms in the velocity regime of 1–70 km/s. Self-bombardment of a condensed Ar and a Cu target are studied. We corroborate the earlier finding that for small clusters, N 1000, above a threshold regime, the crater volume scales linearly with the total impact energy E; by scaling energies to the target cohesive energy U, crater volumes of such diverse materials as condensed Ar and Cu coincide. At threshold Eth, craters are shallow. They become hemispheric at energies ∼5Eth. Part of the material excavated from the crater is sputtered. This fraction decreases with cluster size N. Relatively less material is sputtered from an Ar target than from a Cu target. Larger cluster impact, which we simulate up to N = 3 × 106, shows a stronger size effect, such that the resulting craters increase slightly more than linearly with total energy. This finding is discussed in light of available experimental data for μm- and mm-sized projectiles. Simulations on ductile samples containing pre-existing defects (nanocracks) show that such pre-existing damage plays a negligible role for crater formation and size in metals.Fil: Anders, Christian. University Kaiserslautern. Physics Department and Research Center OPTIMAS; AlemaniaFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Fioretti, Fabricio D.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Ziegenhain, Gerolf. University Kaiserslautern. Physics Department and Research Center OPTIMAS; AlemaniaFil: Urbassek, Herbert M.. University Kaiserslautern. Physics Department and Research Center OPTIMAS; AlemaniaAmerican Physical Society2012-06-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18164Anders, Christian; Bringa, Eduardo Marcial; Fioretti, Fabricio D.; Ziegenhain, Gerolf; Urbassek, Herbert M.; Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape; American Physical Society; Physical Review B: Condensed Matter And Materials Physics; 85; 23; 20-6-2012; 1-14; 2354401098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.85.235440info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.85.235440info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:05Zoai:ri.conicet.gov.ar:11336/18164instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:05.409CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape
title Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape
spellingShingle Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape
Anders, Christian
Nanocracks
Crater Formation
title_short Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape
title_full Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape
title_fullStr Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape
title_full_unstemmed Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape
title_sort Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape
dc.creator.none.fl_str_mv Anders, Christian
Bringa, Eduardo Marcial
Fioretti, Fabricio D.
Ziegenhain, Gerolf
Urbassek, Herbert M.
author Anders, Christian
author_facet Anders, Christian
Bringa, Eduardo Marcial
Fioretti, Fabricio D.
Ziegenhain, Gerolf
Urbassek, Herbert M.
author_role author
author2 Bringa, Eduardo Marcial
Fioretti, Fabricio D.
Ziegenhain, Gerolf
Urbassek, Herbert M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Nanocracks
Crater Formation
topic Nanocracks
Crater Formation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present molecular-dynamics simulations of cratering induced by projectiles containing N ∼= 10–106 atoms in the velocity regime of 1–70 km/s. Self-bombardment of a condensed Ar and a Cu target are studied. We corroborate the earlier finding that for small clusters, N 1000, above a threshold regime, the crater volume scales linearly with the total impact energy E; by scaling energies to the target cohesive energy U, crater volumes of such diverse materials as condensed Ar and Cu coincide. At threshold Eth, craters are shallow. They become hemispheric at energies ∼5Eth. Part of the material excavated from the crater is sputtered. This fraction decreases with cluster size N. Relatively less material is sputtered from an Ar target than from a Cu target. Larger cluster impact, which we simulate up to N = 3 × 106, shows a stronger size effect, such that the resulting craters increase slightly more than linearly with total energy. This finding is discussed in light of available experimental data for μm- and mm-sized projectiles. Simulations on ductile samples containing pre-existing defects (nanocracks) show that such pre-existing damage plays a negligible role for crater formation and size in metals.
Fil: Anders, Christian. University Kaiserslautern. Physics Department and Research Center OPTIMAS; Alemania
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Fioretti, Fabricio D.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Ziegenhain, Gerolf. University Kaiserslautern. Physics Department and Research Center OPTIMAS; Alemania
Fil: Urbassek, Herbert M.. University Kaiserslautern. Physics Department and Research Center OPTIMAS; Alemania
description We present molecular-dynamics simulations of cratering induced by projectiles containing N ∼= 10–106 atoms in the velocity regime of 1–70 km/s. Self-bombardment of a condensed Ar and a Cu target are studied. We corroborate the earlier finding that for small clusters, N 1000, above a threshold regime, the crater volume scales linearly with the total impact energy E; by scaling energies to the target cohesive energy U, crater volumes of such diverse materials as condensed Ar and Cu coincide. At threshold Eth, craters are shallow. They become hemispheric at energies ∼5Eth. Part of the material excavated from the crater is sputtered. This fraction decreases with cluster size N. Relatively less material is sputtered from an Ar target than from a Cu target. Larger cluster impact, which we simulate up to N = 3 × 106, shows a stronger size effect, such that the resulting craters increase slightly more than linearly with total energy. This finding is discussed in light of available experimental data for μm- and mm-sized projectiles. Simulations on ductile samples containing pre-existing defects (nanocracks) show that such pre-existing damage plays a negligible role for crater formation and size in metals.
publishDate 2012
dc.date.none.fl_str_mv 2012-06-20
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18164
Anders, Christian; Bringa, Eduardo Marcial; Fioretti, Fabricio D.; Ziegenhain, Gerolf; Urbassek, Herbert M.; Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape; American Physical Society; Physical Review B: Condensed Matter And Materials Physics; 85; 23; 20-6-2012; 1-14; 235440
1098-0121
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18164
identifier_str_mv Anders, Christian; Bringa, Eduardo Marcial; Fioretti, Fabricio D.; Ziegenhain, Gerolf; Urbassek, Herbert M.; Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape; American Physical Society; Physical Review B: Condensed Matter And Materials Physics; 85; 23; 20-6-2012; 1-14; 235440
1098-0121
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.85.235440
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.85.235440
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269134941847552
score 13.13397