A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics
- Autores
- Clauser, Nicolás Martín; Scown, Corinne D.; Pett-Ridge, Jennifer; Sagues, William Joe
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Biomass carbon removal and storage (BiCRS) is a promising pathway to mitigate climate change via large scale removal of atmospheric carbon dioxide (CO2). We modeled several fermentation technologies, producing a variety of bioproducts from lignocellulosic feedstocks, to understand their levelized cost of CO2 removal under multiple scenarios. Lifecycle greenhouse gas (GHG) emissions are accounted to provide cradle-to-grave estimates of carbon intensity (CI). We did not account for the avoided fossil CO2 emissions from the use of biofuels in our CO2 removal cost calculations, because avoided emissions do not contribute to CO2 removal. The main products from the fermentation technologies we modeled include renewable diesel, ethanol, sustainable aviation fuel (SAF), and polyethylene (PE), with co-products including CO2, adipic acid, steam, and electricity. PE, depending on its end-of-life management, can serve as a form of biogenic carbon storage. PE has the potential to remove 1.2–1.5 tCO2 per dry t-biomass, whereas biofuels have the potential to remove 0.3–0.9 tCO2 per dry t-biomass, indicating that PE production is a more efficient method of carbon removal. We quantify costs of CO2 removal to be $60 – $675 per metric tCO2 removed across the various fermentation pathways. Under the scenarios analyzed, bioplastic production from lignocellulosic biomass is a more cost-effective route to CO2 removal than biofuel production, with costs of CO2 removal via bioplastics being 50–90 % lower than that of biofuels. Future research should explore the potential benefits and drawbacks of expanding bioplastic production for large-scale CO2 removal.
Fil: Clauser, Nicolás Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Fil: Scown, Corinne D.. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Pett-Ridge, Jennifer. Lawrence Livermore National Laboratory; Estados Unidos. University of California; Estados Unidos
Fil: Sagues, William Joe. North Carolina State University; Estados Unidos - Materia
-
Bioeconomy
Carbon capture
Biorefinery - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/274805
Ver los metadatos del registro completo
| id |
CONICETDig_4e93ba9988ed493da0586f6dd368d3f3 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/274805 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplasticsClauser, Nicolás MartínScown, Corinne D.Pett-Ridge, JenniferSagues, William JoeBioeconomyCarbon captureBiorefineryhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Biomass carbon removal and storage (BiCRS) is a promising pathway to mitigate climate change via large scale removal of atmospheric carbon dioxide (CO2). We modeled several fermentation technologies, producing a variety of bioproducts from lignocellulosic feedstocks, to understand their levelized cost of CO2 removal under multiple scenarios. Lifecycle greenhouse gas (GHG) emissions are accounted to provide cradle-to-grave estimates of carbon intensity (CI). We did not account for the avoided fossil CO2 emissions from the use of biofuels in our CO2 removal cost calculations, because avoided emissions do not contribute to CO2 removal. The main products from the fermentation technologies we modeled include renewable diesel, ethanol, sustainable aviation fuel (SAF), and polyethylene (PE), with co-products including CO2, adipic acid, steam, and electricity. PE, depending on its end-of-life management, can serve as a form of biogenic carbon storage. PE has the potential to remove 1.2–1.5 tCO2 per dry t-biomass, whereas biofuels have the potential to remove 0.3–0.9 tCO2 per dry t-biomass, indicating that PE production is a more efficient method of carbon removal. We quantify costs of CO2 removal to be $60 – $675 per metric tCO2 removed across the various fermentation pathways. Under the scenarios analyzed, bioplastic production from lignocellulosic biomass is a more cost-effective route to CO2 removal than biofuel production, with costs of CO2 removal via bioplastics being 50–90 % lower than that of biofuels. Future research should explore the potential benefits and drawbacks of expanding bioplastic production for large-scale CO2 removal.Fil: Clauser, Nicolás Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Scown, Corinne D.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Pett-Ridge, Jennifer. Lawrence Livermore National Laboratory; Estados Unidos. University of California; Estados UnidosFil: Sagues, William Joe. North Carolina State University; Estados UnidosPergamon-Elsevier Science Ltd2025-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274805Clauser, Nicolás Martín; Scown, Corinne D.; Pett-Ridge, Jennifer; Sagues, William Joe; A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics; Pergamon-Elsevier Science Ltd; Renewable & Sustainable Energy Reviews; 216; 7-2025; 1-141364-0321CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1364032125003879info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rser.2025.115714info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T09:19:06Zoai:ri.conicet.gov.ar:11336/274805instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 09:19:06.803CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics |
| title |
A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics |
| spellingShingle |
A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics Clauser, Nicolás Martín Bioeconomy Carbon capture Biorefinery |
| title_short |
A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics |
| title_full |
A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics |
| title_fullStr |
A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics |
| title_full_unstemmed |
A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics |
| title_sort |
A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics |
| dc.creator.none.fl_str_mv |
Clauser, Nicolás Martín Scown, Corinne D. Pett-Ridge, Jennifer Sagues, William Joe |
| author |
Clauser, Nicolás Martín |
| author_facet |
Clauser, Nicolás Martín Scown, Corinne D. Pett-Ridge, Jennifer Sagues, William Joe |
| author_role |
author |
| author2 |
Scown, Corinne D. Pett-Ridge, Jennifer Sagues, William Joe |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Bioeconomy Carbon capture Biorefinery |
| topic |
Bioeconomy Carbon capture Biorefinery |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Biomass carbon removal and storage (BiCRS) is a promising pathway to mitigate climate change via large scale removal of atmospheric carbon dioxide (CO2). We modeled several fermentation technologies, producing a variety of bioproducts from lignocellulosic feedstocks, to understand their levelized cost of CO2 removal under multiple scenarios. Lifecycle greenhouse gas (GHG) emissions are accounted to provide cradle-to-grave estimates of carbon intensity (CI). We did not account for the avoided fossil CO2 emissions from the use of biofuels in our CO2 removal cost calculations, because avoided emissions do not contribute to CO2 removal. The main products from the fermentation technologies we modeled include renewable diesel, ethanol, sustainable aviation fuel (SAF), and polyethylene (PE), with co-products including CO2, adipic acid, steam, and electricity. PE, depending on its end-of-life management, can serve as a form of biogenic carbon storage. PE has the potential to remove 1.2–1.5 tCO2 per dry t-biomass, whereas biofuels have the potential to remove 0.3–0.9 tCO2 per dry t-biomass, indicating that PE production is a more efficient method of carbon removal. We quantify costs of CO2 removal to be $60 – $675 per metric tCO2 removed across the various fermentation pathways. Under the scenarios analyzed, bioplastic production from lignocellulosic biomass is a more cost-effective route to CO2 removal than biofuel production, with costs of CO2 removal via bioplastics being 50–90 % lower than that of biofuels. Future research should explore the potential benefits and drawbacks of expanding bioplastic production for large-scale CO2 removal. Fil: Clauser, Nicolás Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina Fil: Scown, Corinne D.. Lawrence Berkeley National Laboratory; Estados Unidos Fil: Pett-Ridge, Jennifer. Lawrence Livermore National Laboratory; Estados Unidos. University of California; Estados Unidos Fil: Sagues, William Joe. North Carolina State University; Estados Unidos |
| description |
Biomass carbon removal and storage (BiCRS) is a promising pathway to mitigate climate change via large scale removal of atmospheric carbon dioxide (CO2). We modeled several fermentation technologies, producing a variety of bioproducts from lignocellulosic feedstocks, to understand their levelized cost of CO2 removal under multiple scenarios. Lifecycle greenhouse gas (GHG) emissions are accounted to provide cradle-to-grave estimates of carbon intensity (CI). We did not account for the avoided fossil CO2 emissions from the use of biofuels in our CO2 removal cost calculations, because avoided emissions do not contribute to CO2 removal. The main products from the fermentation technologies we modeled include renewable diesel, ethanol, sustainable aviation fuel (SAF), and polyethylene (PE), with co-products including CO2, adipic acid, steam, and electricity. PE, depending on its end-of-life management, can serve as a form of biogenic carbon storage. PE has the potential to remove 1.2–1.5 tCO2 per dry t-biomass, whereas biofuels have the potential to remove 0.3–0.9 tCO2 per dry t-biomass, indicating that PE production is a more efficient method of carbon removal. We quantify costs of CO2 removal to be $60 – $675 per metric tCO2 removed across the various fermentation pathways. Under the scenarios analyzed, bioplastic production from lignocellulosic biomass is a more cost-effective route to CO2 removal than biofuel production, with costs of CO2 removal via bioplastics being 50–90 % lower than that of biofuels. Future research should explore the potential benefits and drawbacks of expanding bioplastic production for large-scale CO2 removal. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/274805 Clauser, Nicolás Martín; Scown, Corinne D.; Pett-Ridge, Jennifer; Sagues, William Joe; A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics; Pergamon-Elsevier Science Ltd; Renewable & Sustainable Energy Reviews; 216; 7-2025; 1-14 1364-0321 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/274805 |
| identifier_str_mv |
Clauser, Nicolás Martín; Scown, Corinne D.; Pett-Ridge, Jennifer; Sagues, William Joe; A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics; Pergamon-Elsevier Science Ltd; Renewable & Sustainable Energy Reviews; 216; 7-2025; 1-14 1364-0321 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1364032125003879 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rser.2025.115714 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1850505492910047232 |
| score |
13.214268 |