Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +

Autores
Rosseler, Olivier; Sleiman, Mohamad; Montesinos, Victor Nahuel; Shavorskiy, Andrey; Keller, Valerie; Keller, Nicolas; Litter, Marta Irene; Bluhm, Hendrik; Salmeron, Miquel; Destaillats, Hugo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3 -, adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO 3 - conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3 - in the vicinity of coadsorbed K+ cations was stable under UV light, leading to an efficient capture of nitrogenated compounds. © 2013 American Chemical Society.
Fil: Rosseler, Olivier. Chemical Sciences Division and Advanced Light Source; Estados Unidos. Université de Strasbourg; Francia
Fil: Sleiman, Mohamad. Chemical Sciences Division and Advanced Light Source; Estados Unidos
Fil: Montesinos, Victor Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Shavorskiy, Andrey. Chemical Sciences Division and Advanced Light Source; Estados Unidos
Fil: Keller, Valerie. Université de Strasbourg; Francia
Fil: Keller, Nicolas. Université de Strasbourg; Francia
Fil: Litter, Marta Irene. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Bluhm, Hendrik. Chemical Sciences Division and Advanced Light Source; Estados Unidos
Fil: Salmeron, Miquel. Chemical Sciences Division and Advanced Light Source; Estados Unidos. University of California at Berkeley; Estados Unidos
Fil: Destaillats, Hugo. Chemical Sciences Division and Advanced Light Source; Estados Unidos
Materia
APXPS
DENOX
DEPOLLUTION
HONO
RENOXIFICATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/77866

id CONICETDig_4e6afcf866a39778901e03b7ccbe286d
oai_identifier_str oai:ri.conicet.gov.ar:11336/77866
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +Rosseler, OlivierSleiman, MohamadMontesinos, Victor NahuelShavorskiy, AndreyKeller, ValerieKeller, NicolasLitter, Marta IreneBluhm, HendrikSalmeron, MiquelDestaillats, HugoAPXPSDENOXDEPOLLUTIONHONORENOXIFICATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3 -, adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO 3 - conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3 - in the vicinity of coadsorbed K+ cations was stable under UV light, leading to an efficient capture of nitrogenated compounds. © 2013 American Chemical Society.Fil: Rosseler, Olivier. Chemical Sciences Division and Advanced Light Source; Estados Unidos. Université de Strasbourg; FranciaFil: Sleiman, Mohamad. Chemical Sciences Division and Advanced Light Source; Estados UnidosFil: Montesinos, Victor Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Shavorskiy, Andrey. Chemical Sciences Division and Advanced Light Source; Estados UnidosFil: Keller, Valerie. Université de Strasbourg; FranciaFil: Keller, Nicolas. Université de Strasbourg; FranciaFil: Litter, Marta Irene. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Bluhm, Hendrik. Chemical Sciences Division and Advanced Light Source; Estados UnidosFil: Salmeron, Miquel. Chemical Sciences Division and Advanced Light Source; Estados Unidos. University of California at Berkeley; Estados UnidosFil: Destaillats, Hugo. Chemical Sciences Division and Advanced Light Source; Estados UnidosAmerican Chemical Society2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77866Rosseler, Olivier; Sleiman, Mohamad; Montesinos, Victor Nahuel; Shavorskiy, Andrey; Keller, Valerie; et al.; Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +; American Chemical Society; Journal of Physical Chemistry Letters; 4; 3; 2-2013; 536-5411948-7185CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jz302119ginfo:eu-repo/semantics/altIdentifier/doi/10.1021/jz302119ginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:52Zoai:ri.conicet.gov.ar:11336/77866instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:53.034CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +
title Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +
spellingShingle Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +
Rosseler, Olivier
APXPS
DENOX
DEPOLLUTION
HONO
RENOXIFICATION
title_short Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +
title_full Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +
title_fullStr Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +
title_full_unstemmed Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +
title_sort Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +
dc.creator.none.fl_str_mv Rosseler, Olivier
Sleiman, Mohamad
Montesinos, Victor Nahuel
Shavorskiy, Andrey
Keller, Valerie
Keller, Nicolas
Litter, Marta Irene
Bluhm, Hendrik
Salmeron, Miquel
Destaillats, Hugo
author Rosseler, Olivier
author_facet Rosseler, Olivier
Sleiman, Mohamad
Montesinos, Victor Nahuel
Shavorskiy, Andrey
Keller, Valerie
Keller, Nicolas
Litter, Marta Irene
Bluhm, Hendrik
Salmeron, Miquel
Destaillats, Hugo
author_role author
author2 Sleiman, Mohamad
Montesinos, Victor Nahuel
Shavorskiy, Andrey
Keller, Valerie
Keller, Nicolas
Litter, Marta Irene
Bluhm, Hendrik
Salmeron, Miquel
Destaillats, Hugo
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv APXPS
DENOX
DEPOLLUTION
HONO
RENOXIFICATION
topic APXPS
DENOX
DEPOLLUTION
HONO
RENOXIFICATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3 -, adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO 3 - conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3 - in the vicinity of coadsorbed K+ cations was stable under UV light, leading to an efficient capture of nitrogenated compounds. © 2013 American Chemical Society.
Fil: Rosseler, Olivier. Chemical Sciences Division and Advanced Light Source; Estados Unidos. Université de Strasbourg; Francia
Fil: Sleiman, Mohamad. Chemical Sciences Division and Advanced Light Source; Estados Unidos
Fil: Montesinos, Victor Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Shavorskiy, Andrey. Chemical Sciences Division and Advanced Light Source; Estados Unidos
Fil: Keller, Valerie. Université de Strasbourg; Francia
Fil: Keller, Nicolas. Université de Strasbourg; Francia
Fil: Litter, Marta Irene. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Bluhm, Hendrik. Chemical Sciences Division and Advanced Light Source; Estados Unidos
Fil: Salmeron, Miquel. Chemical Sciences Division and Advanced Light Source; Estados Unidos. University of California at Berkeley; Estados Unidos
Fil: Destaillats, Hugo. Chemical Sciences Division and Advanced Light Source; Estados Unidos
description Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3 -, adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO 3 - conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3 - in the vicinity of coadsorbed K+ cations was stable under UV light, leading to an efficient capture of nitrogenated compounds. © 2013 American Chemical Society.
publishDate 2013
dc.date.none.fl_str_mv 2013-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/77866
Rosseler, Olivier; Sleiman, Mohamad; Montesinos, Victor Nahuel; Shavorskiy, Andrey; Keller, Valerie; et al.; Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +; American Chemical Society; Journal of Physical Chemistry Letters; 4; 3; 2-2013; 536-541
1948-7185
CONICET Digital
CONICET
url http://hdl.handle.net/11336/77866
identifier_str_mv Rosseler, Olivier; Sleiman, Mohamad; Montesinos, Victor Nahuel; Shavorskiy, Andrey; Keller, Valerie; et al.; Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Products, effect of UV irradiation, water, and coadsorbed K +; American Chemical Society; Journal of Physical Chemistry Letters; 4; 3; 2-2013; 536-541
1948-7185
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jz302119g
info:eu-repo/semantics/altIdentifier/doi/10.1021/jz302119g
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613044941881344
score 13.070432