Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility
- Autores
- Campana, Diego Martin; Saita, Fernando Adolfo
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A two-dimensional (2D) free surface flow model already used to study the Rayleigh instability of thin films lining the interior of capillary tubes under the presence of insoluble surfactants [D. M. Campana, J. Di Paolo, and F. A. Saita, “A 2-D model of Rayleigh instability in capillary tubes. Surfactant effects,” Int. J. Multiphase Flow 30, 431 (2004)] is extended here to deal with soluble solutes. This new version that accounts for the mass transfer of surfactant in the bulk phase, as well as for its interfacial adsorption/desorption, is employed in this work to assess the influence of surfactant solubility on the unstable evolution. We confirm previously reported findings: surfactants do not affect the system stability but the growth rate of the instability [D. R. Otis, M. Johnson, T. J. Pedley, and R. D. Kamm, “The role of pulmonary surfactant in airway closure,” J. Appl. Physiol. 59, 1323 (1993)] and they do not change the successive shapes adopted by the liquid film as the instability develops [S. Kwak and C. Pozrikidis, “Effects of surfactants on the instability of a liquid thread or annular layer. Part I: Quiescent fluids,” Int. J. Multiphase Flow 27, 1 (2001)]. Insoluble surfactants delay the instability process, and the time needed to form liquid lenses disconnecting the gas phase—i.e., the closure time—is four to five times larger than for pure liquids. This retardation effect is considerably reduced when the surfactants are somewhat soluble. For a typical system adopted as a reference case, detailed computed predictions are shown; among them, curves of closure time versus adsorption number are given for solubility values ranging from insoluble to highly soluble conditions. In addition, the evolution of the four mass transport terms appearing in the interfacial mass balance equation—normal and tangential convection, diffusion and sorption—is scrutinized to uncover the mechanisms by which surfactant solubility affects the growth rate of the instability.
Fil: Campana, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Saita, Fernando Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
RAYLEIGH
INSTABILITY
SURFACTANT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26402
Ver los metadatos del registro completo
id |
CONICETDig_4e2873a61f05de16d9f115321e83510a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26402 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubilityCampana, Diego MartinSaita, Fernando AdolfoRAYLEIGHINSTABILITYSURFACTANThttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2A two-dimensional (2D) free surface flow model already used to study the Rayleigh instability of thin films lining the interior of capillary tubes under the presence of insoluble surfactants [D. M. Campana, J. Di Paolo, and F. A. Saita, “A 2-D model of Rayleigh instability in capillary tubes. Surfactant effects,” Int. J. Multiphase Flow 30, 431 (2004)] is extended here to deal with soluble solutes. This new version that accounts for the mass transfer of surfactant in the bulk phase, as well as for its interfacial adsorption/desorption, is employed in this work to assess the influence of surfactant solubility on the unstable evolution. We confirm previously reported findings: surfactants do not affect the system stability but the growth rate of the instability [D. R. Otis, M. Johnson, T. J. Pedley, and R. D. Kamm, “The role of pulmonary surfactant in airway closure,” J. Appl. Physiol. 59, 1323 (1993)] and they do not change the successive shapes adopted by the liquid film as the instability develops [S. Kwak and C. Pozrikidis, “Effects of surfactants on the instability of a liquid thread or annular layer. Part I: Quiescent fluids,” Int. J. Multiphase Flow 27, 1 (2001)]. Insoluble surfactants delay the instability process, and the time needed to form liquid lenses disconnecting the gas phase—i.e., the closure time—is four to five times larger than for pure liquids. This retardation effect is considerably reduced when the surfactants are somewhat soluble. For a typical system adopted as a reference case, detailed computed predictions are shown; among them, curves of closure time versus adsorption number are given for solubility values ranging from insoluble to highly soluble conditions. In addition, the evolution of the four mass transport terms appearing in the interfacial mass balance equation—normal and tangential convection, diffusion and sorption—is scrutinized to uncover the mechanisms by which surfactant solubility affects the growth rate of the instability.Fil: Campana, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Saita, Fernando Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaAmerican Institute of Physics2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26402Campana, Diego Martin; Saita, Fernando Adolfo; Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility; American Institute of Physics; Physics of Fluids; 18; 2; 12-2006; 1-161070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.2173969info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.2173969info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:45:24Zoai:ri.conicet.gov.ar:11336/26402instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:45:24.61CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility |
title |
Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility |
spellingShingle |
Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility Campana, Diego Martin RAYLEIGH INSTABILITY SURFACTANT |
title_short |
Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility |
title_full |
Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility |
title_fullStr |
Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility |
title_full_unstemmed |
Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility |
title_sort |
Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility |
dc.creator.none.fl_str_mv |
Campana, Diego Martin Saita, Fernando Adolfo |
author |
Campana, Diego Martin |
author_facet |
Campana, Diego Martin Saita, Fernando Adolfo |
author_role |
author |
author2 |
Saita, Fernando Adolfo |
author2_role |
author |
dc.subject.none.fl_str_mv |
RAYLEIGH INSTABILITY SURFACTANT |
topic |
RAYLEIGH INSTABILITY SURFACTANT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A two-dimensional (2D) free surface flow model already used to study the Rayleigh instability of thin films lining the interior of capillary tubes under the presence of insoluble surfactants [D. M. Campana, J. Di Paolo, and F. A. Saita, “A 2-D model of Rayleigh instability in capillary tubes. Surfactant effects,” Int. J. Multiphase Flow 30, 431 (2004)] is extended here to deal with soluble solutes. This new version that accounts for the mass transfer of surfactant in the bulk phase, as well as for its interfacial adsorption/desorption, is employed in this work to assess the influence of surfactant solubility on the unstable evolution. We confirm previously reported findings: surfactants do not affect the system stability but the growth rate of the instability [D. R. Otis, M. Johnson, T. J. Pedley, and R. D. Kamm, “The role of pulmonary surfactant in airway closure,” J. Appl. Physiol. 59, 1323 (1993)] and they do not change the successive shapes adopted by the liquid film as the instability develops [S. Kwak and C. Pozrikidis, “Effects of surfactants on the instability of a liquid thread or annular layer. Part I: Quiescent fluids,” Int. J. Multiphase Flow 27, 1 (2001)]. Insoluble surfactants delay the instability process, and the time needed to form liquid lenses disconnecting the gas phase—i.e., the closure time—is four to five times larger than for pure liquids. This retardation effect is considerably reduced when the surfactants are somewhat soluble. For a typical system adopted as a reference case, detailed computed predictions are shown; among them, curves of closure time versus adsorption number are given for solubility values ranging from insoluble to highly soluble conditions. In addition, the evolution of the four mass transport terms appearing in the interfacial mass balance equation—normal and tangential convection, diffusion and sorption—is scrutinized to uncover the mechanisms by which surfactant solubility affects the growth rate of the instability. Fil: Campana, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Saita, Fernando Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
A two-dimensional (2D) free surface flow model already used to study the Rayleigh instability of thin films lining the interior of capillary tubes under the presence of insoluble surfactants [D. M. Campana, J. Di Paolo, and F. A. Saita, “A 2-D model of Rayleigh instability in capillary tubes. Surfactant effects,” Int. J. Multiphase Flow 30, 431 (2004)] is extended here to deal with soluble solutes. This new version that accounts for the mass transfer of surfactant in the bulk phase, as well as for its interfacial adsorption/desorption, is employed in this work to assess the influence of surfactant solubility on the unstable evolution. We confirm previously reported findings: surfactants do not affect the system stability but the growth rate of the instability [D. R. Otis, M. Johnson, T. J. Pedley, and R. D. Kamm, “The role of pulmonary surfactant in airway closure,” J. Appl. Physiol. 59, 1323 (1993)] and they do not change the successive shapes adopted by the liquid film as the instability develops [S. Kwak and C. Pozrikidis, “Effects of surfactants on the instability of a liquid thread or annular layer. Part I: Quiescent fluids,” Int. J. Multiphase Flow 27, 1 (2001)]. Insoluble surfactants delay the instability process, and the time needed to form liquid lenses disconnecting the gas phase—i.e., the closure time—is four to five times larger than for pure liquids. This retardation effect is considerably reduced when the surfactants are somewhat soluble. For a typical system adopted as a reference case, detailed computed predictions are shown; among them, curves of closure time versus adsorption number are given for solubility values ranging from insoluble to highly soluble conditions. In addition, the evolution of the four mass transport terms appearing in the interfacial mass balance equation—normal and tangential convection, diffusion and sorption—is scrutinized to uncover the mechanisms by which surfactant solubility affects the growth rate of the instability. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26402 Campana, Diego Martin; Saita, Fernando Adolfo; Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility; American Institute of Physics; Physics of Fluids; 18; 2; 12-2006; 1-16 1070-6631 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26402 |
identifier_str_mv |
Campana, Diego Martin; Saita, Fernando Adolfo; Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility; American Institute of Physics; Physics of Fluids; 18; 2; 12-2006; 1-16 1070-6631 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.2173969 info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.2173969 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082964310458368 |
score |
13.22299 |