Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility

Autores
Campana, Diego Martin; Saita, Fernando Adolfo
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A two-dimensional (2D) free surface flow model already used to study the Rayleigh instability of thin films lining the interior of capillary tubes under the presence of insoluble surfactants [D. M. Campana, J. Di Paolo, and F. A. Saita, “A 2-D model of Rayleigh instability in capillary tubes. Surfactant effects,” Int. J. Multiphase Flow 30, 431 (2004)] is extended here to deal with soluble solutes. This new version that accounts for the mass transfer of surfactant in the bulk phase, as well as for its interfacial adsorption/desorption, is employed in this work to assess the influence of surfactant solubility on the unstable evolution. We confirm previously reported findings: surfactants do not affect the system stability but the growth rate of the instability [D. R. Otis, M. Johnson, T. J. Pedley, and R. D. Kamm, “The role of pulmonary surfactant in airway closure,” J. Appl. Physiol. 59, 1323 (1993)] and they do not change the successive shapes adopted by the liquid film as the instability develops [S. Kwak and C. Pozrikidis, “Effects of surfactants on the instability of a liquid thread or annular layer. Part I: Quiescent fluids,” Int. J. Multiphase Flow 27, 1 (2001)]. Insoluble surfactants delay the instability process, and the time needed to form liquid lenses disconnecting the gas phase—i.e., the closure time—is four to five times larger than for pure liquids. This retardation effect is considerably reduced when the surfactants are somewhat soluble. For a typical system adopted as a reference case, detailed computed predictions are shown; among them, curves of closure time versus adsorption number are given for solubility values ranging from insoluble to highly soluble conditions. In addition, the evolution of the four mass transport terms appearing in the interfacial mass balance equation—normal and tangential convection, diffusion and sorption—is scrutinized to uncover the mechanisms by which surfactant solubility affects the growth rate of the instability.
Fil: Campana, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Saita, Fernando Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
RAYLEIGH
INSTABILITY
SURFACTANT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/26402

id CONICETDig_4e2873a61f05de16d9f115321e83510a
oai_identifier_str oai:ri.conicet.gov.ar:11336/26402
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubilityCampana, Diego MartinSaita, Fernando AdolfoRAYLEIGHINSTABILITYSURFACTANThttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2A two-dimensional (2D) free surface flow model already used to study the Rayleigh instability of thin films lining the interior of capillary tubes under the presence of insoluble surfactants [D. M. Campana, J. Di Paolo, and F. A. Saita, “A 2-D model of Rayleigh instability in capillary tubes. Surfactant effects,” Int. J. Multiphase Flow 30, 431 (2004)] is extended here to deal with soluble solutes. This new version that accounts for the mass transfer of surfactant in the bulk phase, as well as for its interfacial adsorption/desorption, is employed in this work to assess the influence of surfactant solubility on the unstable evolution. We confirm previously reported findings: surfactants do not affect the system stability but the growth rate of the instability [D. R. Otis, M. Johnson, T. J. Pedley, and R. D. Kamm, “The role of pulmonary surfactant in airway closure,” J. Appl. Physiol. 59, 1323 (1993)] and they do not change the successive shapes adopted by the liquid film as the instability develops [S. Kwak and C. Pozrikidis, “Effects of surfactants on the instability of a liquid thread or annular layer. Part I: Quiescent fluids,” Int. J. Multiphase Flow 27, 1 (2001)]. Insoluble surfactants delay the instability process, and the time needed to form liquid lenses disconnecting the gas phase—i.e., the closure time—is four to five times larger than for pure liquids. This retardation effect is considerably reduced when the surfactants are somewhat soluble. For a typical system adopted as a reference case, detailed computed predictions are shown; among them, curves of closure time versus adsorption number are given for solubility values ranging from insoluble to highly soluble conditions. In addition, the evolution of the four mass transport terms appearing in the interfacial mass balance equation—normal and tangential convection, diffusion and sorption—is scrutinized to uncover the mechanisms by which surfactant solubility affects the growth rate of the instability.Fil: Campana, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Saita, Fernando Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaAmerican Institute of Physics2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26402Campana, Diego Martin; Saita, Fernando Adolfo; Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility; American Institute of Physics; Physics of Fluids; 18; 2; 12-2006; 1-161070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.2173969info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.2173969info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:45:24Zoai:ri.conicet.gov.ar:11336/26402instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:45:24.61CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility
title Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility
spellingShingle Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility
Campana, Diego Martin
RAYLEIGH
INSTABILITY
SURFACTANT
title_short Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility
title_full Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility
title_fullStr Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility
title_full_unstemmed Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility
title_sort Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility
dc.creator.none.fl_str_mv Campana, Diego Martin
Saita, Fernando Adolfo
author Campana, Diego Martin
author_facet Campana, Diego Martin
Saita, Fernando Adolfo
author_role author
author2 Saita, Fernando Adolfo
author2_role author
dc.subject.none.fl_str_mv RAYLEIGH
INSTABILITY
SURFACTANT
topic RAYLEIGH
INSTABILITY
SURFACTANT
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A two-dimensional (2D) free surface flow model already used to study the Rayleigh instability of thin films lining the interior of capillary tubes under the presence of insoluble surfactants [D. M. Campana, J. Di Paolo, and F. A. Saita, “A 2-D model of Rayleigh instability in capillary tubes. Surfactant effects,” Int. J. Multiphase Flow 30, 431 (2004)] is extended here to deal with soluble solutes. This new version that accounts for the mass transfer of surfactant in the bulk phase, as well as for its interfacial adsorption/desorption, is employed in this work to assess the influence of surfactant solubility on the unstable evolution. We confirm previously reported findings: surfactants do not affect the system stability but the growth rate of the instability [D. R. Otis, M. Johnson, T. J. Pedley, and R. D. Kamm, “The role of pulmonary surfactant in airway closure,” J. Appl. Physiol. 59, 1323 (1993)] and they do not change the successive shapes adopted by the liquid film as the instability develops [S. Kwak and C. Pozrikidis, “Effects of surfactants on the instability of a liquid thread or annular layer. Part I: Quiescent fluids,” Int. J. Multiphase Flow 27, 1 (2001)]. Insoluble surfactants delay the instability process, and the time needed to form liquid lenses disconnecting the gas phase—i.e., the closure time—is four to five times larger than for pure liquids. This retardation effect is considerably reduced when the surfactants are somewhat soluble. For a typical system adopted as a reference case, detailed computed predictions are shown; among them, curves of closure time versus adsorption number are given for solubility values ranging from insoluble to highly soluble conditions. In addition, the evolution of the four mass transport terms appearing in the interfacial mass balance equation—normal and tangential convection, diffusion and sorption—is scrutinized to uncover the mechanisms by which surfactant solubility affects the growth rate of the instability.
Fil: Campana, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Saita, Fernando Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description A two-dimensional (2D) free surface flow model already used to study the Rayleigh instability of thin films lining the interior of capillary tubes under the presence of insoluble surfactants [D. M. Campana, J. Di Paolo, and F. A. Saita, “A 2-D model of Rayleigh instability in capillary tubes. Surfactant effects,” Int. J. Multiphase Flow 30, 431 (2004)] is extended here to deal with soluble solutes. This new version that accounts for the mass transfer of surfactant in the bulk phase, as well as for its interfacial adsorption/desorption, is employed in this work to assess the influence of surfactant solubility on the unstable evolution. We confirm previously reported findings: surfactants do not affect the system stability but the growth rate of the instability [D. R. Otis, M. Johnson, T. J. Pedley, and R. D. Kamm, “The role of pulmonary surfactant in airway closure,” J. Appl. Physiol. 59, 1323 (1993)] and they do not change the successive shapes adopted by the liquid film as the instability develops [S. Kwak and C. Pozrikidis, “Effects of surfactants on the instability of a liquid thread or annular layer. Part I: Quiescent fluids,” Int. J. Multiphase Flow 27, 1 (2001)]. Insoluble surfactants delay the instability process, and the time needed to form liquid lenses disconnecting the gas phase—i.e., the closure time—is four to five times larger than for pure liquids. This retardation effect is considerably reduced when the surfactants are somewhat soluble. For a typical system adopted as a reference case, detailed computed predictions are shown; among them, curves of closure time versus adsorption number are given for solubility values ranging from insoluble to highly soluble conditions. In addition, the evolution of the four mass transport terms appearing in the interfacial mass balance equation—normal and tangential convection, diffusion and sorption—is scrutinized to uncover the mechanisms by which surfactant solubility affects the growth rate of the instability.
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/26402
Campana, Diego Martin; Saita, Fernando Adolfo; Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility; American Institute of Physics; Physics of Fluids; 18; 2; 12-2006; 1-16
1070-6631
CONICET Digital
CONICET
url http://hdl.handle.net/11336/26402
identifier_str_mv Campana, Diego Martin; Saita, Fernando Adolfo; Numerical analysis of the Rayleigh instability in capillary tubes: The influence of surfactant solubility; American Institute of Physics; Physics of Fluids; 18; 2; 12-2006; 1-16
1070-6631
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.2173969
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.2173969
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082964310458368
score 13.22299