Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions
- Autores
- Ciach, Alina; De Virgiliis, Andres; Meyra, Ariel German; Litniewski, Marek
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Competing interactions between charged inclusions in membranes of living organisms or charged nanoparticles in near-critical mixtures can lead to self-assembly into various patterns. Motivated by these systems, we developed a simple triangular lattice model for binary mixtures of oppositely charged particles with additional short-range attraction or repulsion between like or different particles, respectively. We determined the ground state for the system in contact with a reservoir of the particles for the whole chemical potentials plane, and the structure of self-assembled conglomerates for fixed numbers of particles. Stability of the low-temperature ordered patterns was verified by Monte Carlo simulations. In addition, we performed molecular dynamics simulations for a continuous model with interactions having similar features, but a larger range and lower strength than in the lattice model. Interactions with and without symmetry between different components were assumed. We investigated both the conglomerate formed in the center of a thin slit with repulsive walls, and the structure of a monolayer adsorbed at an attractive substrate. Both models give the same patterns for large chemical potentials or densities. For low densities, more patterns occur in the lattice model. Different phases coexist with dilute gas on the lattice and in the continuum, leading to different patterns in self-assembled conglomerates (‘rafts’).
Fil: Ciach, Alina. Polish Academy of Sciences; Argentina
Fil: De Virgiliis, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina
Fil: Meyra, Ariel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Tecnológica Nacional; Argentina
Fil: Litniewski, Marek. Polish Academy of Sciences; Argentina - Materia
-
COMPETING INTERACTIONS
MIXTURE OF CHARGED PARTICLES
MOLECULAR MODELING
PATTERN FORMATION
SELF-ASSEMBLY
THERMODYNAMIC CASIMIR POTENTIAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/219204
Ver los metadatos del registro completo
id |
CONICETDig_4da97bec9712d57da2d833a4c424a5f9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/219204 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pattern Formation in Two-Component Monolayers of Particles with Competing InteractionsCiach, AlinaDe Virgiliis, AndresMeyra, Ariel GermanLitniewski, MarekCOMPETING INTERACTIONSMIXTURE OF CHARGED PARTICLESMOLECULAR MODELINGPATTERN FORMATIONSELF-ASSEMBLYTHERMODYNAMIC CASIMIR POTENTIALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Competing interactions between charged inclusions in membranes of living organisms or charged nanoparticles in near-critical mixtures can lead to self-assembly into various patterns. Motivated by these systems, we developed a simple triangular lattice model for binary mixtures of oppositely charged particles with additional short-range attraction or repulsion between like or different particles, respectively. We determined the ground state for the system in contact with a reservoir of the particles for the whole chemical potentials plane, and the structure of self-assembled conglomerates for fixed numbers of particles. Stability of the low-temperature ordered patterns was verified by Monte Carlo simulations. In addition, we performed molecular dynamics simulations for a continuous model with interactions having similar features, but a larger range and lower strength than in the lattice model. Interactions with and without symmetry between different components were assumed. We investigated both the conglomerate formed in the center of a thin slit with repulsive walls, and the structure of a monolayer adsorbed at an attractive substrate. Both models give the same patterns for large chemical potentials or densities. For low densities, more patterns occur in the lattice model. Different phases coexist with dilute gas on the lattice and in the continuum, leading to different patterns in self-assembled conglomerates (‘rafts’).Fil: Ciach, Alina. Polish Academy of Sciences; ArgentinaFil: De Virgiliis, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; ArgentinaFil: Meyra, Ariel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Litniewski, Marek. Polish Academy of Sciences; ArgentinaMolecular Diversity Preservation International2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219204Ciach, Alina; De Virgiliis, Andres; Meyra, Ariel German; Litniewski, Marek; Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions; Molecular Diversity Preservation International; Molecules; 28; 3; 1-2023; 1-171420-3049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1420-3049/28/3/1366info:eu-repo/semantics/altIdentifier/doi/10.3390/molecules28031366info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:12Zoai:ri.conicet.gov.ar:11336/219204instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:12.407CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions |
title |
Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions |
spellingShingle |
Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions Ciach, Alina COMPETING INTERACTIONS MIXTURE OF CHARGED PARTICLES MOLECULAR MODELING PATTERN FORMATION SELF-ASSEMBLY THERMODYNAMIC CASIMIR POTENTIAL |
title_short |
Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions |
title_full |
Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions |
title_fullStr |
Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions |
title_full_unstemmed |
Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions |
title_sort |
Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions |
dc.creator.none.fl_str_mv |
Ciach, Alina De Virgiliis, Andres Meyra, Ariel German Litniewski, Marek |
author |
Ciach, Alina |
author_facet |
Ciach, Alina De Virgiliis, Andres Meyra, Ariel German Litniewski, Marek |
author_role |
author |
author2 |
De Virgiliis, Andres Meyra, Ariel German Litniewski, Marek |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
COMPETING INTERACTIONS MIXTURE OF CHARGED PARTICLES MOLECULAR MODELING PATTERN FORMATION SELF-ASSEMBLY THERMODYNAMIC CASIMIR POTENTIAL |
topic |
COMPETING INTERACTIONS MIXTURE OF CHARGED PARTICLES MOLECULAR MODELING PATTERN FORMATION SELF-ASSEMBLY THERMODYNAMIC CASIMIR POTENTIAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Competing interactions between charged inclusions in membranes of living organisms or charged nanoparticles in near-critical mixtures can lead to self-assembly into various patterns. Motivated by these systems, we developed a simple triangular lattice model for binary mixtures of oppositely charged particles with additional short-range attraction or repulsion between like or different particles, respectively. We determined the ground state for the system in contact with a reservoir of the particles for the whole chemical potentials plane, and the structure of self-assembled conglomerates for fixed numbers of particles. Stability of the low-temperature ordered patterns was verified by Monte Carlo simulations. In addition, we performed molecular dynamics simulations for a continuous model with interactions having similar features, but a larger range and lower strength than in the lattice model. Interactions with and without symmetry between different components were assumed. We investigated both the conglomerate formed in the center of a thin slit with repulsive walls, and the structure of a monolayer adsorbed at an attractive substrate. Both models give the same patterns for large chemical potentials or densities. For low densities, more patterns occur in the lattice model. Different phases coexist with dilute gas on the lattice and in the continuum, leading to different patterns in self-assembled conglomerates (‘rafts’). Fil: Ciach, Alina. Polish Academy of Sciences; Argentina Fil: De Virgiliis, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina Fil: Meyra, Ariel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Tecnológica Nacional; Argentina Fil: Litniewski, Marek. Polish Academy of Sciences; Argentina |
description |
Competing interactions between charged inclusions in membranes of living organisms or charged nanoparticles in near-critical mixtures can lead to self-assembly into various patterns. Motivated by these systems, we developed a simple triangular lattice model for binary mixtures of oppositely charged particles with additional short-range attraction or repulsion between like or different particles, respectively. We determined the ground state for the system in contact with a reservoir of the particles for the whole chemical potentials plane, and the structure of self-assembled conglomerates for fixed numbers of particles. Stability of the low-temperature ordered patterns was verified by Monte Carlo simulations. In addition, we performed molecular dynamics simulations for a continuous model with interactions having similar features, but a larger range and lower strength than in the lattice model. Interactions with and without symmetry between different components were assumed. We investigated both the conglomerate formed in the center of a thin slit with repulsive walls, and the structure of a monolayer adsorbed at an attractive substrate. Both models give the same patterns for large chemical potentials or densities. For low densities, more patterns occur in the lattice model. Different phases coexist with dilute gas on the lattice and in the continuum, leading to different patterns in self-assembled conglomerates (‘rafts’). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/219204 Ciach, Alina; De Virgiliis, Andres; Meyra, Ariel German; Litniewski, Marek; Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions; Molecular Diversity Preservation International; Molecules; 28; 3; 1-2023; 1-17 1420-3049 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/219204 |
identifier_str_mv |
Ciach, Alina; De Virgiliis, Andres; Meyra, Ariel German; Litniewski, Marek; Pattern Formation in Two-Component Monolayers of Particles with Competing Interactions; Molecular Diversity Preservation International; Molecules; 28; 3; 1-2023; 1-17 1420-3049 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1420-3049/28/3/1366 info:eu-repo/semantics/altIdentifier/doi/10.3390/molecules28031366 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614358544416768 |
score |
13.070432 |