Peptidome profiling for the immunological stratification in sepsis: a proof of concept study
- Autores
- Ledesma, Martin Manuel; Todero, Maria Florencia; Maceira, Lautaro; Prieto, Monica; Vay, Carlos; Galas, Marcelo Fabián; López, Beatriz; Yokobori, Noemí; Rearte, María Bárbara
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Sepsis has been called the graveyard of pharmaceutical companies due to the numerous failed clinical trials. The lack of tools to monitor the immunological status in sepsis constrains the development of therapies. Here, we evaluated a test based on whole plasma peptidome acquired by MALDI-TOF-mass spectrometer and machine-learning algorithms to discriminate two lipopolysaccharide-(LPS) induced murine models emulating the pro- and anti-inflammatory/immunosuppression environments that can be found during sepsis. The LPS group was inoculated with a single high dose of LPS and the IS group was subjected to increasing doses of LPS, to induce proinflammatory and anti-inflammatory/immunosuppression profiles respectively. The LPS group showed leukopenia and higher levels of cytokines and tissue damage markers, and the IS group showed neutrophilia, lymphopenia and decreased humoral response. Principal component analysis of the plasma peptidomes formed discrete clusters that mostly coincided with the experimental groups. In addition, machine-learning algorithms discriminated the different experimental groups with a sensitivity of 95.7% and specificity of 90.9%. Data reveal the potential of plasma fingerprints analysis by MALDI-TOF-mass spectrometry as a simple, speedy and readily transferrable method for sepsis patient stratification that would contribute to therapeutic decision-making based on their immunological status.
Fil: Ledesma, Martin Manuel. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Todero, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina
Fil: Maceira, Lautaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina
Fil: Prieto, Monica. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; Argentina. Administración Nacional de Laboratorio e Institutos de Salud "Dr. Carlos G. Malbrán". Instituto Nacional de Epidemiologia. Departamento de Investigación; Argentina
Fil: Vay, Carlos. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica; Argentina
Fil: Galas, Marcelo Fabián. Organización Panamericana de la Salud; Estados Unidos
Fil: López, Beatriz. Administración Nacional de Laboratorio e Institutos de Salud "Dr. Carlos G. Malbrán". Instituto Nacional de Epidemiologia. Departamento de Investigación; Argentina
Fil: Yokobori, Noemí. Administración Nacional de Laboratorio e Institutos de Salud "Dr. Carlos G. Malbrán". Instituto Nacional de Epidemiologia. Departamento de Investigación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rearte, María Bárbara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina - Materia
-
MALDI-TOF
Sepsis
Peptidome - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/201520
Ver los metadatos del registro completo
id |
CONICETDig_4d1fe8c2989a5e965b8e7f3ab0517260 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/201520 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Peptidome profiling for the immunological stratification in sepsis: a proof of concept studyLedesma, Martin ManuelTodero, Maria FlorenciaMaceira, LautaroPrieto, MonicaVay, CarlosGalas, Marcelo FabiánLópez, BeatrizYokobori, NoemíRearte, María BárbaraMALDI-TOFSepsisPeptidomehttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Sepsis has been called the graveyard of pharmaceutical companies due to the numerous failed clinical trials. The lack of tools to monitor the immunological status in sepsis constrains the development of therapies. Here, we evaluated a test based on whole plasma peptidome acquired by MALDI-TOF-mass spectrometer and machine-learning algorithms to discriminate two lipopolysaccharide-(LPS) induced murine models emulating the pro- and anti-inflammatory/immunosuppression environments that can be found during sepsis. The LPS group was inoculated with a single high dose of LPS and the IS group was subjected to increasing doses of LPS, to induce proinflammatory and anti-inflammatory/immunosuppression profiles respectively. The LPS group showed leukopenia and higher levels of cytokines and tissue damage markers, and the IS group showed neutrophilia, lymphopenia and decreased humoral response. Principal component analysis of the plasma peptidomes formed discrete clusters that mostly coincided with the experimental groups. In addition, machine-learning algorithms discriminated the different experimental groups with a sensitivity of 95.7% and specificity of 90.9%. Data reveal the potential of plasma fingerprints analysis by MALDI-TOF-mass spectrometry as a simple, speedy and readily transferrable method for sepsis patient stratification that would contribute to therapeutic decision-making based on their immunological status.Fil: Ledesma, Martin Manuel. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Todero, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Maceira, Lautaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Prieto, Monica. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; Argentina. Administración Nacional de Laboratorio e Institutos de Salud "Dr. Carlos G. Malbrán". Instituto Nacional de Epidemiologia. Departamento de Investigación; ArgentinaFil: Vay, Carlos. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica; ArgentinaFil: Galas, Marcelo Fabián. Organización Panamericana de la Salud; Estados UnidosFil: López, Beatriz. Administración Nacional de Laboratorio e Institutos de Salud "Dr. Carlos G. Malbrán". Instituto Nacional de Epidemiologia. Departamento de Investigación; ArgentinaFil: Yokobori, Noemí. Administración Nacional de Laboratorio e Institutos de Salud "Dr. Carlos G. Malbrán". Instituto Nacional de Epidemiologia. Departamento de Investigación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rearte, María Bárbara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaNature Publishing Group2022-07-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/201520Ledesma, Martin Manuel; Todero, Maria Florencia; Maceira, Lautaro; Prieto, Monica; Vay, Carlos; et al.; Peptidome profiling for the immunological stratification in sepsis: a proof of concept study; Nature Publishing Group; Scientific Reports; 12; 1; 6-7-2022; 1-82045-23222045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-022-15792-5#Sec2info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-15792-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:59Zoai:ri.conicet.gov.ar:11336/201520instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:59.501CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Peptidome profiling for the immunological stratification in sepsis: a proof of concept study |
title |
Peptidome profiling for the immunological stratification in sepsis: a proof of concept study |
spellingShingle |
Peptidome profiling for the immunological stratification in sepsis: a proof of concept study Ledesma, Martin Manuel MALDI-TOF Sepsis Peptidome |
title_short |
Peptidome profiling for the immunological stratification in sepsis: a proof of concept study |
title_full |
Peptidome profiling for the immunological stratification in sepsis: a proof of concept study |
title_fullStr |
Peptidome profiling for the immunological stratification in sepsis: a proof of concept study |
title_full_unstemmed |
Peptidome profiling for the immunological stratification in sepsis: a proof of concept study |
title_sort |
Peptidome profiling for the immunological stratification in sepsis: a proof of concept study |
dc.creator.none.fl_str_mv |
Ledesma, Martin Manuel Todero, Maria Florencia Maceira, Lautaro Prieto, Monica Vay, Carlos Galas, Marcelo Fabián López, Beatriz Yokobori, Noemí Rearte, María Bárbara |
author |
Ledesma, Martin Manuel |
author_facet |
Ledesma, Martin Manuel Todero, Maria Florencia Maceira, Lautaro Prieto, Monica Vay, Carlos Galas, Marcelo Fabián López, Beatriz Yokobori, Noemí Rearte, María Bárbara |
author_role |
author |
author2 |
Todero, Maria Florencia Maceira, Lautaro Prieto, Monica Vay, Carlos Galas, Marcelo Fabián López, Beatriz Yokobori, Noemí Rearte, María Bárbara |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
MALDI-TOF Sepsis Peptidome |
topic |
MALDI-TOF Sepsis Peptidome |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Sepsis has been called the graveyard of pharmaceutical companies due to the numerous failed clinical trials. The lack of tools to monitor the immunological status in sepsis constrains the development of therapies. Here, we evaluated a test based on whole plasma peptidome acquired by MALDI-TOF-mass spectrometer and machine-learning algorithms to discriminate two lipopolysaccharide-(LPS) induced murine models emulating the pro- and anti-inflammatory/immunosuppression environments that can be found during sepsis. The LPS group was inoculated with a single high dose of LPS and the IS group was subjected to increasing doses of LPS, to induce proinflammatory and anti-inflammatory/immunosuppression profiles respectively. The LPS group showed leukopenia and higher levels of cytokines and tissue damage markers, and the IS group showed neutrophilia, lymphopenia and decreased humoral response. Principal component analysis of the plasma peptidomes formed discrete clusters that mostly coincided with the experimental groups. In addition, machine-learning algorithms discriminated the different experimental groups with a sensitivity of 95.7% and specificity of 90.9%. Data reveal the potential of plasma fingerprints analysis by MALDI-TOF-mass spectrometry as a simple, speedy and readily transferrable method for sepsis patient stratification that would contribute to therapeutic decision-making based on their immunological status. Fil: Ledesma, Martin Manuel. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Todero, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina Fil: Maceira, Lautaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina Fil: Prieto, Monica. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; Argentina. Administración Nacional de Laboratorio e Institutos de Salud "Dr. Carlos G. Malbrán". Instituto Nacional de Epidemiologia. Departamento de Investigación; Argentina Fil: Vay, Carlos. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica; Argentina Fil: Galas, Marcelo Fabián. Organización Panamericana de la Salud; Estados Unidos Fil: López, Beatriz. Administración Nacional de Laboratorio e Institutos de Salud "Dr. Carlos G. Malbrán". Instituto Nacional de Epidemiologia. Departamento de Investigación; Argentina Fil: Yokobori, Noemí. Administración Nacional de Laboratorio e Institutos de Salud "Dr. Carlos G. Malbrán". Instituto Nacional de Epidemiologia. Departamento de Investigación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rearte, María Bárbara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina |
description |
Sepsis has been called the graveyard of pharmaceutical companies due to the numerous failed clinical trials. The lack of tools to monitor the immunological status in sepsis constrains the development of therapies. Here, we evaluated a test based on whole plasma peptidome acquired by MALDI-TOF-mass spectrometer and machine-learning algorithms to discriminate two lipopolysaccharide-(LPS) induced murine models emulating the pro- and anti-inflammatory/immunosuppression environments that can be found during sepsis. The LPS group was inoculated with a single high dose of LPS and the IS group was subjected to increasing doses of LPS, to induce proinflammatory and anti-inflammatory/immunosuppression profiles respectively. The LPS group showed leukopenia and higher levels of cytokines and tissue damage markers, and the IS group showed neutrophilia, lymphopenia and decreased humoral response. Principal component analysis of the plasma peptidomes formed discrete clusters that mostly coincided with the experimental groups. In addition, machine-learning algorithms discriminated the different experimental groups with a sensitivity of 95.7% and specificity of 90.9%. Data reveal the potential of plasma fingerprints analysis by MALDI-TOF-mass spectrometry as a simple, speedy and readily transferrable method for sepsis patient stratification that would contribute to therapeutic decision-making based on their immunological status. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/201520 Ledesma, Martin Manuel; Todero, Maria Florencia; Maceira, Lautaro; Prieto, Monica; Vay, Carlos; et al.; Peptidome profiling for the immunological stratification in sepsis: a proof of concept study; Nature Publishing Group; Scientific Reports; 12; 1; 6-7-2022; 1-8 2045-2322 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/201520 |
identifier_str_mv |
Ledesma, Martin Manuel; Todero, Maria Florencia; Maceira, Lautaro; Prieto, Monica; Vay, Carlos; et al.; Peptidome profiling for the immunological stratification in sepsis: a proof of concept study; Nature Publishing Group; Scientific Reports; 12; 1; 6-7-2022; 1-8 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-022-15792-5#Sec2 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-15792-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269375729500160 |
score |
13.13397 |