On Topological Derivatives for Contact Problems in Elasticity
- Autores
- Giusti, Sebastian Miguel; Sokolowski, Jan; Stebel,Jan
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article, a general method for shape-topology sensitivity analysis of contact problems is proposed. The method uses domain decomposition combined with specific properties of minimizers for the energy functional. The method is applied to the static problem of an elastic body in frictionless contact with a rigid foundation. The contact model allows a small interpenetration of the bodies in the contact region. This interpenetration is modeled by means of a scalar function that depends on the normal component of the displacement field on the potential contact zone. We present the asymptotic behavior of the energy shape functional when a spheroidal void is introduced at an arbitrary point of the elastic body. For the asymptotic analysis, we use a nonoverlapping domain decomposition technique and the associated Steklov–Poincaré pseudodifferential operator. The differentiability of the energy with respect to the nonsmooth perturbation is established, and the topological derivative is presented in the closed form.
Fil: Giusti, Sebastian Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; Argentina
Fil: Sokolowski, Jan. Université de Lorraine; Francia. Systems Research Institute of the Polish Academy of Sciences; Polonia
Fil: Stebel,Jan. Institute of Mathematics of the Academy of Sciences of the Czech Republic; República Checa - Materia
-
Topological Derivative
Static Frictionless Contact Problem
Asymptotic Analysis
Domain Decomposition
Steklov–Poincaré Operator - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/34081
Ver los metadatos del registro completo
id |
CONICETDig_4d0a47356c6e264712e57fd1818980f3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/34081 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On Topological Derivatives for Contact Problems in ElasticityGiusti, Sebastian MiguelSokolowski, JanStebel,JanTopological DerivativeStatic Frictionless Contact ProblemAsymptotic AnalysisDomain DecompositionSteklov–Poincaré Operatorhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article, a general method for shape-topology sensitivity analysis of contact problems is proposed. The method uses domain decomposition combined with specific properties of minimizers for the energy functional. The method is applied to the static problem of an elastic body in frictionless contact with a rigid foundation. The contact model allows a small interpenetration of the bodies in the contact region. This interpenetration is modeled by means of a scalar function that depends on the normal component of the displacement field on the potential contact zone. We present the asymptotic behavior of the energy shape functional when a spheroidal void is introduced at an arbitrary point of the elastic body. For the asymptotic analysis, we use a nonoverlapping domain decomposition technique and the associated Steklov–Poincaré pseudodifferential operator. The differentiability of the energy with respect to the nonsmooth perturbation is established, and the topological derivative is presented in the closed form.Fil: Giusti, Sebastian Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; ArgentinaFil: Sokolowski, Jan. Université de Lorraine; Francia. Systems Research Institute of the Polish Academy of Sciences; PoloniaFil: Stebel,Jan. Institute of Mathematics of the Academy of Sciences of the Czech Republic; República ChecaSpringer/plenum Publishers2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34081Giusti, Sebastian Miguel; Sokolowski, Jan; Stebel,Jan; On Topological Derivatives for Contact Problems in Elasticity; Springer/plenum Publishers; Journal Of Optimization Theory And Applications; 165; 1; 6-2014; 279-2940022-3239CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10957-014-0594-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10957-014-0594-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:07Zoai:ri.conicet.gov.ar:11336/34081instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:07.571CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On Topological Derivatives for Contact Problems in Elasticity |
title |
On Topological Derivatives for Contact Problems in Elasticity |
spellingShingle |
On Topological Derivatives for Contact Problems in Elasticity Giusti, Sebastian Miguel Topological Derivative Static Frictionless Contact Problem Asymptotic Analysis Domain Decomposition Steklov–Poincaré Operator |
title_short |
On Topological Derivatives for Contact Problems in Elasticity |
title_full |
On Topological Derivatives for Contact Problems in Elasticity |
title_fullStr |
On Topological Derivatives for Contact Problems in Elasticity |
title_full_unstemmed |
On Topological Derivatives for Contact Problems in Elasticity |
title_sort |
On Topological Derivatives for Contact Problems in Elasticity |
dc.creator.none.fl_str_mv |
Giusti, Sebastian Miguel Sokolowski, Jan Stebel,Jan |
author |
Giusti, Sebastian Miguel |
author_facet |
Giusti, Sebastian Miguel Sokolowski, Jan Stebel,Jan |
author_role |
author |
author2 |
Sokolowski, Jan Stebel,Jan |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Topological Derivative Static Frictionless Contact Problem Asymptotic Analysis Domain Decomposition Steklov–Poincaré Operator |
topic |
Topological Derivative Static Frictionless Contact Problem Asymptotic Analysis Domain Decomposition Steklov–Poincaré Operator |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article, a general method for shape-topology sensitivity analysis of contact problems is proposed. The method uses domain decomposition combined with specific properties of minimizers for the energy functional. The method is applied to the static problem of an elastic body in frictionless contact with a rigid foundation. The contact model allows a small interpenetration of the bodies in the contact region. This interpenetration is modeled by means of a scalar function that depends on the normal component of the displacement field on the potential contact zone. We present the asymptotic behavior of the energy shape functional when a spheroidal void is introduced at an arbitrary point of the elastic body. For the asymptotic analysis, we use a nonoverlapping domain decomposition technique and the associated Steklov–Poincaré pseudodifferential operator. The differentiability of the energy with respect to the nonsmooth perturbation is established, and the topological derivative is presented in the closed form. Fil: Giusti, Sebastian Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; Argentina Fil: Sokolowski, Jan. Université de Lorraine; Francia. Systems Research Institute of the Polish Academy of Sciences; Polonia Fil: Stebel,Jan. Institute of Mathematics of the Academy of Sciences of the Czech Republic; República Checa |
description |
In this article, a general method for shape-topology sensitivity analysis of contact problems is proposed. The method uses domain decomposition combined with specific properties of minimizers for the energy functional. The method is applied to the static problem of an elastic body in frictionless contact with a rigid foundation. The contact model allows a small interpenetration of the bodies in the contact region. This interpenetration is modeled by means of a scalar function that depends on the normal component of the displacement field on the potential contact zone. We present the asymptotic behavior of the energy shape functional when a spheroidal void is introduced at an arbitrary point of the elastic body. For the asymptotic analysis, we use a nonoverlapping domain decomposition technique and the associated Steklov–Poincaré pseudodifferential operator. The differentiability of the energy with respect to the nonsmooth perturbation is established, and the topological derivative is presented in the closed form. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/34081 Giusti, Sebastian Miguel; Sokolowski, Jan; Stebel,Jan; On Topological Derivatives for Contact Problems in Elasticity; Springer/plenum Publishers; Journal Of Optimization Theory And Applications; 165; 1; 6-2014; 279-294 0022-3239 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/34081 |
identifier_str_mv |
Giusti, Sebastian Miguel; Sokolowski, Jan; Stebel,Jan; On Topological Derivatives for Contact Problems in Elasticity; Springer/plenum Publishers; Journal Of Optimization Theory And Applications; 165; 1; 6-2014; 279-294 0022-3239 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10957-014-0594-7 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10957-014-0594-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer/plenum Publishers |
publisher.none.fl_str_mv |
Springer/plenum Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613965783498752 |
score |
13.070432 |