On Topological Derivatives for Contact Problems in Elasticity

Autores
Giusti, Sebastian Miguel; Sokolowski, Jan; Stebel,Jan
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article, a general method for shape-topology sensitivity analysis of contact problems is proposed. The method uses domain decomposition combined with specific properties of minimizers for the energy functional. The method is applied to the static problem of an elastic body in frictionless contact with a rigid foundation. The contact model allows a small interpenetration of the bodies in the contact region. This interpenetration is modeled by means of a scalar function that depends on the normal component of the displacement field on the potential contact zone. We present the asymptotic behavior of the energy shape functional when a spheroidal void is introduced at an arbitrary point of the elastic body. For the asymptotic analysis, we use a nonoverlapping domain decomposition technique and the associated Steklov–Poincaré pseudodifferential operator. The differentiability of the energy with respect to the nonsmooth perturbation is established, and the topological derivative is presented in the closed form.
Fil: Giusti, Sebastian Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; Argentina
Fil: Sokolowski, Jan. Université de Lorraine; Francia. Systems Research Institute of the Polish Academy of Sciences; Polonia
Fil: Stebel,Jan. Institute of Mathematics of the Academy of Sciences of the Czech Republic; República Checa
Materia
Topological Derivative
Static Frictionless Contact Problem
Asymptotic Analysis
Domain Decomposition
Steklov–Poincaré Operator
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/34081

id CONICETDig_4d0a47356c6e264712e57fd1818980f3
oai_identifier_str oai:ri.conicet.gov.ar:11336/34081
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On Topological Derivatives for Contact Problems in ElasticityGiusti, Sebastian MiguelSokolowski, JanStebel,JanTopological DerivativeStatic Frictionless Contact ProblemAsymptotic AnalysisDomain DecompositionSteklov–Poincaré Operatorhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article, a general method for shape-topology sensitivity analysis of contact problems is proposed. The method uses domain decomposition combined with specific properties of minimizers for the energy functional. The method is applied to the static problem of an elastic body in frictionless contact with a rigid foundation. The contact model allows a small interpenetration of the bodies in the contact region. This interpenetration is modeled by means of a scalar function that depends on the normal component of the displacement field on the potential contact zone. We present the asymptotic behavior of the energy shape functional when a spheroidal void is introduced at an arbitrary point of the elastic body. For the asymptotic analysis, we use a nonoverlapping domain decomposition technique and the associated Steklov–Poincaré pseudodifferential operator. The differentiability of the energy with respect to the nonsmooth perturbation is established, and the topological derivative is presented in the closed form.Fil: Giusti, Sebastian Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; ArgentinaFil: Sokolowski, Jan. Université de Lorraine; Francia. Systems Research Institute of the Polish Academy of Sciences; PoloniaFil: Stebel,Jan. Institute of Mathematics of the Academy of Sciences of the Czech Republic; República ChecaSpringer/plenum Publishers2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34081Giusti, Sebastian Miguel; Sokolowski, Jan; Stebel,Jan; On Topological Derivatives for Contact Problems in Elasticity; Springer/plenum Publishers; Journal Of Optimization Theory And Applications; 165; 1; 6-2014; 279-2940022-3239CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10957-014-0594-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10957-014-0594-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:07Zoai:ri.conicet.gov.ar:11336/34081instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:07.571CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On Topological Derivatives for Contact Problems in Elasticity
title On Topological Derivatives for Contact Problems in Elasticity
spellingShingle On Topological Derivatives for Contact Problems in Elasticity
Giusti, Sebastian Miguel
Topological Derivative
Static Frictionless Contact Problem
Asymptotic Analysis
Domain Decomposition
Steklov–Poincaré Operator
title_short On Topological Derivatives for Contact Problems in Elasticity
title_full On Topological Derivatives for Contact Problems in Elasticity
title_fullStr On Topological Derivatives for Contact Problems in Elasticity
title_full_unstemmed On Topological Derivatives for Contact Problems in Elasticity
title_sort On Topological Derivatives for Contact Problems in Elasticity
dc.creator.none.fl_str_mv Giusti, Sebastian Miguel
Sokolowski, Jan
Stebel,Jan
author Giusti, Sebastian Miguel
author_facet Giusti, Sebastian Miguel
Sokolowski, Jan
Stebel,Jan
author_role author
author2 Sokolowski, Jan
Stebel,Jan
author2_role author
author
dc.subject.none.fl_str_mv Topological Derivative
Static Frictionless Contact Problem
Asymptotic Analysis
Domain Decomposition
Steklov–Poincaré Operator
topic Topological Derivative
Static Frictionless Contact Problem
Asymptotic Analysis
Domain Decomposition
Steklov–Poincaré Operator
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article, a general method for shape-topology sensitivity analysis of contact problems is proposed. The method uses domain decomposition combined with specific properties of minimizers for the energy functional. The method is applied to the static problem of an elastic body in frictionless contact with a rigid foundation. The contact model allows a small interpenetration of the bodies in the contact region. This interpenetration is modeled by means of a scalar function that depends on the normal component of the displacement field on the potential contact zone. We present the asymptotic behavior of the energy shape functional when a spheroidal void is introduced at an arbitrary point of the elastic body. For the asymptotic analysis, we use a nonoverlapping domain decomposition technique and the associated Steklov–Poincaré pseudodifferential operator. The differentiability of the energy with respect to the nonsmooth perturbation is established, and the topological derivative is presented in the closed form.
Fil: Giusti, Sebastian Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; Argentina
Fil: Sokolowski, Jan. Université de Lorraine; Francia. Systems Research Institute of the Polish Academy of Sciences; Polonia
Fil: Stebel,Jan. Institute of Mathematics of the Academy of Sciences of the Czech Republic; República Checa
description In this article, a general method for shape-topology sensitivity analysis of contact problems is proposed. The method uses domain decomposition combined with specific properties of minimizers for the energy functional. The method is applied to the static problem of an elastic body in frictionless contact with a rigid foundation. The contact model allows a small interpenetration of the bodies in the contact region. This interpenetration is modeled by means of a scalar function that depends on the normal component of the displacement field on the potential contact zone. We present the asymptotic behavior of the energy shape functional when a spheroidal void is introduced at an arbitrary point of the elastic body. For the asymptotic analysis, we use a nonoverlapping domain decomposition technique and the associated Steklov–Poincaré pseudodifferential operator. The differentiability of the energy with respect to the nonsmooth perturbation is established, and the topological derivative is presented in the closed form.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/34081
Giusti, Sebastian Miguel; Sokolowski, Jan; Stebel,Jan; On Topological Derivatives for Contact Problems in Elasticity; Springer/plenum Publishers; Journal Of Optimization Theory And Applications; 165; 1; 6-2014; 279-294
0022-3239
CONICET Digital
CONICET
url http://hdl.handle.net/11336/34081
identifier_str_mv Giusti, Sebastian Miguel; Sokolowski, Jan; Stebel,Jan; On Topological Derivatives for Contact Problems in Elasticity; Springer/plenum Publishers; Journal Of Optimization Theory And Applications; 165; 1; 6-2014; 279-294
0022-3239
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10957-014-0594-7
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10957-014-0594-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer/plenum Publishers
publisher.none.fl_str_mv Springer/plenum Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613965783498752
score 13.070432